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INTRODUCTION: 
 
The goal of this research project was twofold: 
 
Task # 1a:  Assemble multimodal human performance laboratory including complex human motor assessment 
system, 128 channel EEG/ERP, pupilometer/eyetracking system, and repetitive transcranial magnetic 
stimulation system. 
 
Task # 1b:  Conduct a pilot research study demonstrating the capabilities of performing multimodal 
assessment of object retrieval, particularly when those objects may be considered threatening or 
nonthreatening. 
 
 
BODY: 
 
Task #1a. has been accomplished and reported previously.  The Multi-Modal Brain-Motor Performance 
Laboratory is fully constructed and operational at the University of Texas at Dallas Center for BrainHealth 
located at 2200 W. Mockingbird Lane, Dallas, Texas 75235 in room 3.120. Additional planned components (a 
high-end immersive driving/task simulator and an eight camera human motion capture and analysis system) 
were also constructed and are located at the University of Texas at Arlington’s Human Performance Institute, 
Nedderman Hall, Room 241. 
 
We have recently also added to the Multi-Modal Brain-Motor Performance Laboratory two motion detection 
cameras that with sensors attached to a subject’s knees and ankles can record human gait patterns for 
analysis. 
 
The pilot study (Task #1B.) This has been conducted after a prolonged delay in IRB approval.  Since receiving 
approval from the USAMRMC HRPO, we have conducted the pilot study in 5 normal controls while combining 
rTMS at 1 Hz for 20 minutes.  Prior to and after the rTMS, the subjects were administered the visual object 
processing ERP/EEG measures that detect hyperarousal to threatening and nonthreatening pictures.  These 
were performed successfully both prior to and after the rTMS procedures for every subject.  There were no 
complications or difficulties experienced in performing the pilot research study 
 
In addition, with equipment purchased from these grant funds, we have developed a study/technique where we 
have incorporated pupilometer measures of the same stimuli presented for the ERP/EEG measures. This 
provides for individual subject measures of their arousal responses for individual stimuli. This has now been 
performed on 12 volunteer controls and we are continuing to enroll individuals for this normalization study. This 
has also been addressed from the aspect of adjusting for the luminance of the stimuli (see attached technical 
report). By being able to perform assessments of each individual’s arousal/hyperarousal responses, thus 
allowing for individualized assessment to specific hyperarousal stimuli. This advance better suits the system to 
perform individual assessments and detect treatment responses to specific arousing stimuli for a given 
individual. 
 
The findings from the pilot studies of effectiveness of the rTMS-EEG system and the addition of pupilometry to 
perform individualized assessments of arousing stimuli has ideally positioned us to perform the studies 
proposed in our newly awarded CDMRP DMRDP grant entitled “Novel Treatment of Emotional Dysfunction in 
PTSD,” that we have just received notification of award to the PI, Dr. John Hart, Jr.  This new 3 year grant will 
use 12 sessions of rTMS at 1 Hz with Cognitive Processing Therapy administered immediately after each 
rTMS session.  The hypothesis is that the rTMS will temporarily reduce the threat/hyperarousal response so 
the Cognitive Processing Therapy can have maximal effect. The present project provided the equipment and 
preliminary data that allowed for this treatment trial to be funded, for which we are exceedingly grateful. 
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KEY RESEARCH ACCOMPLISHMENTS: 
 
Completion of the integrated Multimodal Human Performance Laboratory, including: 

- Repetitive Transcranial Magnetic Stimulation System with Magstim Super Rapid package and 
BrainSight Software System 

- SensoMotoric Instruments (SMI) Eyetracker system 
- Biologics EEG System 
- Human Motor Performance assessment system 

 
We have upgraded the system further by purchasing on our own an EMG unit to integrate with the other 
equipment. 
 
We have also produced the following research developments: 
 
1.  Working on technological development in time-frequency EEG analysis which has lead to a recent 
publication (Ferree et al., Neuroimage, 2009). 
 
2.  Working with engineering on inspection of the rTMS unit and upgrade and integration with the EMG unit 
added to the multi-modal laboratory. 
 
3.  Established EEG markers of selection and inhibition of concepts and semantic memory.  This lead to ERP 
markers (Maguire et al., 2009), and time-frequency and coherence measures (Brier et al., in press) of selecting 
correct and inhibiting incorrect memories. 
 
4.  We are in the process of validating a pupilometry measure with the established EEG measure of 
arousal/threat that allows for assessment of an individual’s arousal response to specific emotional stimuli. 
 
 
REPORTABLE OUTCOMES: 
 
Task #1a. has been performed. 
 
Task #1b. has been performed. 
 
This has culminated in the award of the CDMRP DMRDP grant entitled “Novel Treatment of Emotional 
Dysfunction in PTSD,” to the PI, Dr. John Hart, Jr. 
 
In addition, the following relevant presentations and publications in peer reviewed journals have  
 
Presentations (J. Hart): 
 
Ferree, T.C., Brier, M.R., Hart, J., Kraut, M.A.  Space-Time-Frequency analysis of EEG data in single subject 
and group data. Cognitive Neuroscience Society Meeting, March 21 – 24, 2009.  
 
Calley, C.S., Brier, M.R., Ferree, T.C., Patel, R.H., Gelman, Y., Tillman, G.D., Kraut, M.A., Hart, J.  EEG 
correlates of processing visual threatening stimuli. Cognitive Neuroscience Society Meeting, March 21 – 24, 
2009. 
 
Brier, M.R., Maguire, M.J, Ferree, T.C., Gelman, Y., Patel, R., Hart, J., Kraut, M.A.  Arithmetic Processing and 
Number Comparison as Revealed by Event Related Potentials.  Society for Neuroscience Meeting, 2009. 
 
Calley, C., Brier, M., Ferree, T., Patel, R., Gelman, Y., Tillman, G., Kraut, M., Hart, Jr., J.  EEG correlates, of 
threatening visual stimuli.  Cognitive Neuroscience Society Annual Meeting, Montréal, Canada, 2010. 
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Kraut, M., Brier, M., Maguire, M., Ferree, T., Hart, J.  Frontal theta and alpha power and coherence changes 
are modulated by semantic complexity in Go/NoGo tasks.  Cognitive Neuroscience Society Annual Meeting, 
Montréal, Canada, 2010. 
 
Papers (J. Hart): 
 
Ferree, T., Brier, M., Hart, J., Kraut, M.  Space-time frequency analysis of EEG data using within-subject 
statistical tests followed by sequential PCA.  Neuroimage, 45(1):109-21, 2009. 
 
Maguire, M., Brier, M., Moore, P., Ferree, T., Ray, D., Mostofsky, S., Hart, J., Kraut, M.   The influence of 
perceptual and semantic categorization on inhibitory processing as measured by the N2-P3 response.  Brain 
and Cognition, 71, 59, 2009. 
 
Brier, M., Ferree, T., Maguire, M., Moore, P., Spence, J., Tillman, G., Hart, J., Kraut, M.  Frontal Theta and 
Alpha Power and Coherence Changes are Modulated by Semantic Complexity in Go/NoGo Tasks.  
International Journal of Psychophysiology, in press. 
 
CONCLUSION: 
 
In summary, the assimilation of this unique multimodal human cognitive-motor assessment laboratory is a 
significant accomplishment and will allow for numerous innovative studies.  As a result of this laboratory and 
work, we have successful in obtaining a 3-yearCDMRP DMRDP grant entitled “Novel Treatment of Emotional 
Dysfunction in PTSD,” using rTMS in conjunction with Cognitive Processing Therapy. 
 
 
REFERENCES: 
 
1. Jafari, R. & Hart, J. Pupil Dilation in response to threat/non-threat pictures with varying luminance. Technical 
Report. 
 
2. Ferree, T., Brier, M., Hart, J., Kraut, M.  Space-time frequency analysis of EEG data using within-subject 
statistical tests followed by sequential PCA.  Neuroimage, 45(1):109-21, 2009. 
 
3. Maguire, M., Brier, M., Moore, P., Ferree, T., Ray, D., Mostofsky, S., Hart, J., Kraut, M.   The influence of 
perceptual and semantic categorization on inhibitory processing as measured by the N2-P3 response.  Brain 
and Cognition, 71, 59, 2009. 
 
4. Brier, M., Ferree, T., Maguire, M., Moore, P., Spence, J., Tillman, G., Hart, J., Kraut, M.  Frontal Theta and 
Alpha Power and Coherence Changes are Modulated by Semantic Complexity in Go/NoGo Tasks.  
International Journal of Psychophysiology, in press. 
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Pupil Dilation in response to threat/non-threat pictures with varying 
luminance 

R. Jafari & J. Hart 

Abstract -   The goal of this study was to detect the level of arousal induced by pictures of negative, 
positive and neutral affective valence by measuring the pupil dilation of 4 subjects.  In order to detect 
arousal from pupil dilation data, it was necessary to reduce the effect of luminance.  This required 
comparing the picture luminance measures to the collected pupil dilation data, and applying additional 
processing to reduce the effect of luminance.  The applied algorithm extracted the component of pupil 
dilation orthogonal to picture luminance measures.  Although this processing increased the arousal 
“score” of some high arousal (as opposed to neutral) pictures, neutral pictures still had higher scores 
than expected.  This suggests a nonlinear relationship between pupil dilation and luminance. 

I. Introduction 
 

In our experiment, four subjects were exposed to threat, non-threat and scrambled pictures.  Of these, 
20 pictures were high arousal and positive valence (non-threat), 20 pictures were high arousal and 
negative valence (threat), and 40 pictures were low arousal, scrambled versions of the high arousal 
pictures.  Each picture was displayed for 2 seconds, with an 8 second inter-stimulus interval. 

Throughout the experiment, pupil dilation was measured with the iView X eye tracking system.  
Although pupil dilation was expected to be a function of arousal induced by pictures, luminance was also 
a factor in the overall pupil dilation.  Previous studies have controlled for luminance in their stimuli in 
various ways.  [1] used sound stimuli from the Internation Affective Digitized Sounds (IADS) set, to avoid 
the complications of visual stimuli.  [2] and [3] used white text on a black background to keep luminance 
relatively constant.  [4] converted International Affective Picture System (IAPS) pictures to grayscale 
pictures, and equated the average luminance of each class of pictures. 

In this experiment, the pupil dilation results are adjusted to account for luminance.  The mean 
luminance of each picture can be calculated from RGB values by converting to the Y component of the 
CIE color space [5].  The conversion from sRGB (color space convention used in MATLAB) to the 
luminance, Y, is given by  [6]. 

II. Processing pupil diameter data 
 

Pupil dilation was determined by taking the difference between the end and start points of the 2 second 
stimulus duration.  Invalid data due to blinking and transient noise were replaced using linear 
interpolation.   Invalid data segments were detected by limiting the valid range of the mean and 
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standard deviation over an 80 ms period.  Pupil dilation results were recorded over all 80 pictures for all 
4 subjects.  

III. Adjusting for luminance 
 

Because our goal was to find the pictures of highest arousal across all subjects, pupil dilation results had 
to be averaged across the 4 subjects.  However, the mean and standard deviation of dilation with 
respect to a subject does not contribute any information to discriminate between pictures.  The pupil 
dilation data for each subject was therefore converted to a zero-mean vector, and all four vectors were 
normalized to have the same standard deviation.  Once the zero-mean, normalized vectors were 
averaged across the 4 subjects, the resulting vector was transformed to reduce the effect of luminance. 

Consider the   pupil dilation vector, , and the luminance vector, , of equal size.   can be 
decomposed into components parallel and orthogonal to . 

 

 can therefore be reduced to its component orthogonal to ,  , by the following operation. 

 

The result of this operation is displayed in Table 1. 

Table 1.  First 20 pictures arranged in descending order according to  

 Name Valence   

74 tgun_in_belt -1 0.115347505 0.152155 
52 apachecopter -1 0.034490611 0.151945 
79 nhot_chocolatescr 0 -0.0010266 0.145671 
64 ncake_flower_scr 0 0.15235485 0.117463 
38 troaring_tiger -1 0.116284019 0.115561 
51 twolfscr 0 0.121940414 0.111647 
54 tfunnel_cloudscr 0 0.139537803 0.107237 
62 smokehelijeepscr 0 0.120158398 0.105061 
13 gunmanviewscr 0 0.009563267 0.093799 
6 tsniper_rifle -1 0.004372519 0.092999 

40 aussie13scr 0 0.027024582 0.089859 
63 n_beach_dog_n_baby 1 0.042247151 0.089525 
14 nkittensscr 0 0.0308066 0.083023 
69 nhorsescr 0 0.027850034 0.076117 
10 nnice_brown_dogscr 0 0.06639312 0.071448 
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33 tblack-neck_snakescr 0 -0.05280666 0.052838 
65 n_beach_dog__n_baby_scr 0 -0.01441656 0.052248 
70 tsnowstorm -1 -0.01706497 0.050081 

24 ttwisterscr 0 0.099689556 0.047187 

78 ngrand_parent's_facesscr 0 0.059495774 0.045928 
 

   Table 1 shows the 20 pictures corresponding to the largest elements in  .  The elements of  can 

therefore be considered to be scores used to rank pictures according to arousal.  The valence column 
indicates whether the picture has positive (1), negative (-1) or neutral (0) valence.  Valence scores of -1 
and 1 were expected to correspond to higher arousal scores while valence scores of 0 were expected to 
correspond to low arousal scores.  The results in Table 1 indicate that the effect of luminance on pupil 

dilation may be significantly nonlinear, limiting the effectiveness of  , or that only a few pictures 

resulted in significant arousal. 

To compare the values of  to the original pupil dilation vector, , Table 2 lists the 20 largest 

elements in  .   

Table 2.  First 20 pictures arranged in descending order according to  

 Name Valence   

64 ncake_flower_scr 0 0.15235485 0.117463 
54 tfunnel_cloudscr 0 0.139537803 0.107237 
51 twolfscr 0 0.121940414 0.111647 
62 smokehelijeepscr 0 0.120158398 0.105061 
38 troaring_tiger -1 0.116284019 0.115561 
74 tgun_in_belt -1 0.115347505 0.152155 
67 tsuicide_gunman -1 0.105319183 0.004066 
47 tsuicide_gunmanscr 0 0.101810676 0.029326 
24 ttwisterscr 0 0.099689556 0.047187 
1 nelephants 1 0.092348936 0.01178 

30 ttwister -1 0.090130234 0.014674 
37 ntomatoesscr 0 0.086980004 0.004621 
73 thand_pointing_gun -1 0.085774709 -0.03198 
4 tdemon_dog -1 0.074187284 -0.05516 
2 nelephantsscr 0 0.071106304 -0.00039 

50 npopsicles 1 0.067395423 0.026409 
10 nnice_brown_dogscr 0 0.06639312 0.071448 
39 n3fooddishes 1 0.063894199 -0.00389 

78 ngrand_parent's_facesscr 0 0.059495774 0.045928 

46 twolf -1 0.058341368 0.013317 
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IV. Alternative techniques to estimate and reduce the effect of luminance 
 

Alternate algorithms that were applied to the data set did not yield improved results, but may be useful 
if applied to larger data sets. 

A.  Alternative luminance estimate 
 

Some pictures that may have caused high arousal corresponded to low values in  .  However, because 
subjects do not fixate their gaze on the background, the luminance of these pictures may be 
underestimated.   

An alternate estimate of luminance is therefore the maximum mean luminance of any  window in 
the picture.  These luminance measures were calculated for  and  windows, but were 
found to have a lower magnitude of correlation with pupil dilation than overall luminance. 

 

Table 3. Correlation coefficient of different luminance measures and pupil dilation. 

Overall luminance -0.741914564 
Maximum  window -0.552441567 
Maximum  window -0.388838877 

 

Another problem with this measure is that it favors the non-scrambled pictures.  The neutral, scrambled 
pictures have a relatively constant luminance throughout a picture, and therefore have smaller maxima. 

A better approach may therefore be to apply a nonlinear function (such as log) to the overall luminance 
calculation because this may better describe the effect of luminance on pupil dilation. 

 

B. Calculating   for each subject 
 

It is reasonable to assume that the effect of luminance on pupil dilation is more consistent than the 
subjects’ affective response to pictures.  Whenever a set of signals are averaged, the resulting signal will 
emphasize factors common to all signals, while reducing factors that vary between signals.  We can 
therefore expect that the effect of luminance will increase if pupil dilation vectors are averaged.  This 
hypothesis is supported by Table 4, which shows correlation coefficients between various pupil dilation 
vectors and the luminance vector, which is constant between subjects.  Specifically, it compares the 
correlation coefficients calculated from the dilation vectors of individual subjects, to the correlation 
coefficients calculated from the average dilation vector across all subjects. 
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Table 4. Correlation coefficients calculated by correlating pupil dilation vectors to a constant 
luminance vector. 

Subject 0 -0.53574 
Subject 1 -0.71699 
Subject 2 -0.45791 
Subject 3 -0.61908 
Average dilation vector across subjects -0.74191 

 

From Table 4 it is evident that luminance becomes a more significant factor if the dilation vectors are 
averaged across subjects.  To reduce the effect of luminance it may therefore be beneficial to calculate 

 separately for each subject before finding the average vector across subjects.  Although this 
technique yielded results similar to Table 1, it may prove superior on a different data set.  
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for analyzing the time-varying spectral content of EEG data collected in cognitive
tasks. The goal is to extract and summarize the most salient features of numerical results, which span space,
time, frequency, task conditions, and multiple subjects. Direct generalization of an established approach for
analyzing event-related potentials, which uses sequential PCA followed by ANOVA to test for differences
between conditions across subjects, gave unacceptable results. The new method, termed STAT-PCA,
advocates statistical testing for differences between conditions within single subjects, followed by sequential
PCA across subjects. In contrast to PCA-ANOVA, it is demonstrated that STAT-PCA gives results which: 1)
isolate task-related spectral changes, 2) are insensitive to the precise definition of baseline power, 3) are
stable under deletion of a random subject, and 4) are interpretable in terms of the group-averaged power.
Furthermore, STAT-PCA permits the detection of activity that is not only different between conditions, but
also common to both conditions, providing a complete yet parsimonious view of the data. It is concluded that
STAT-PCA is well suited for analyzing the time-varying spectral content of EEG during cognitive tasks.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Cognitive experiments involve stimuli delivered to the subject,
and responses generated by the subject, in time frames that depend
upon the task. Brain responses that involve increased synchrony with
a consistent phase relationship to an event, e.g., stimulus or response,
contribute to the event-related potential (ERP). Brain responses that
involve decreased synchrony, or increased synchrony without a
consistent phase relationship to an event, are best detected with
time–frequency analysis. In cognitive tasks with long duration, time–
frequency analysis is expected to be more fruitful than ERP analysis.
While time–frequency analysis is relatively straightforward, a
considerable challenge remains to reduce and summarize the
numerical results, which span space, time, frequency, task conditions,
and subjects.

Principal component analysis (PCA) has been applied extensively
to ERP analysis, in order to reduce the waveforms in spatial and
temporal dimensions (Spencer et al.,1999, 2001). The ERP is computed
in each condition, by averaging the post-stimulus time series across
trials. The number of trials in each condition and the variance of the
mean are not retained. Then PCA is applied sequentially to spatial and
rights reserved.

l., Space–time–frequency ana
.1016/j.neuroimage.2008.09.013
temporal dimensions, and the resulting factor scores are submitted to
ANOVA to test for differences between conditions. The group of
subjects, rather than repeated trials, is used as the statistical ensemble
when testing for differences between conditions. This approach,
which we call PCA-ANOVA, is reported to work well for ERP analysis,
and is now used widely. Its main limitations are that PCA-ANOVA can
test only for differences between conditions, and requires multiple
subjects on which to base these tests.

When extending to time–frequency analysis, the needs for data
reduction are even greater, and the very nature of the data is different.
Only a few studies have used PCA together with time–frequency
analysis. Bernat et al. (2005) combined time–frequency analysis with
PCA, but their emphasis was a comparison between different methods
of time–frequency analysis. Tenke and Kayser (2005) studied the
effects of transforming the power spectrum, and using an explicit
reference versus the surface Laplacian. Our findings support this
previous work, but neither group addressed the key question of how
best to integrate PCA with statistical testing.

Following the approach established in the ERP literature, we
applied PCA sequentially to frequency, space, and time dimensions,
then submitted the resulting scores to ANOVA to test for differences
between conditions. The results were found to be unstable, and
changing the order of dimensions did not resolve the problems. We
suspected that PCA, when applied first, was unable to isolate task-
related changes, because the power spectrum is dominated by
lysis of EEG data using within-subject statistical tests followed by
20

mailto:tom.ferree@gmail.com
http://dx.doi.org/10.1016/j.neuroimage.2008.09.020
http://www.sciencedirect.com/science/journal/10538119
http://dx.doi.org/10.1016/j.neuroimage.2008.09.020


2 T.C. Ferree et al. / NeuroImage xxx (2008) xxx–xxx

ARTICLE IN PRESS
features that may not be task related. If the task-related effects do not
contribute the greatest variance to the matrix passed to PCA, then PCA
will not isolate the task-related activity in the highest components.
Because Varimax rotation behaves poorlywithmany components, and
because the overall goal is data reduction, it is important to organize
the analysis so that task-related activity appears in the first few
principal components.

We hypothesized that a better approach would put statistical
testing at the beginning of the analysis, in order to isolate task-related
variance in single subjects. Statistical testing for differences between
power spectra is standard in a large body of work on event-related
synchronization (ERS) and de-synchronization (ERD), in which these
tests are conducted in single subjects (Pfurtscheller and Lopes da Silva,
1999; Delorme and Makeig, 2004). The number of trials in each
condition, and the variance in the estimate of the mean, are used to
test statistical significance. For visualization purposes, differences that
are not statistically significant are often rounded to zero. In the new
approach called STAT-PCA, we tested for differences between condi-
tions in single subjects, then followedwith PCA for data reduction, and
found that results were highly stable.

Within-subject statistical testing also solves several other pro-
blems inherent in the analysis of cognitive data with PCA. First, it
permits testing for differences not only between conditions, but also
between a given condition and baseline. We use this fact to reveal
activity that is common to both conditions. Second, it has been noted
that the rotation ambiguity of PCA factors may result in misallocation
of variance (Wood and McCarthy, 1984), giving linear combinations of
activity in the two conditions (Dien, 1998). By conducting statistical
tests within subjects, activity that is different between conditions, and
activity that is common to both conditions, are separated before
decomposing with PCA, so an important caveat of PCA is eliminated.
Third, statistical testing in single subjects isolates task-related activity
in single subjects, and this facilitates clinical diagnosis in which single
subjects are the focus of investigation.

Methods

Participants

The subjects were 25 young adults between the ages of 18 and 29.
All were right-handed, and 10 were male. All were free from
neurological or psychiatric disorders by self-report. Written informed
consent was obtained from each subject prior to testing. This study
was conducted according to the Good Clinical Practice Guidelines, the
Declaration of Helsinki, and the U.S. Code of Federal Regulations.
Written and informed consent was obtained from all participants
according to the rules of the Institutional Review Board of The
University of Texas at Dallas.

Stimuli and task

The data set upon which we developed these methods is part of a
continuing study of semantic memory retrieval (Slotnick et al., 2002;
Assaf et al., 2006). The stimuli consisted of pairs of written words,
which consisted of features of familiar objects (e.g., ‘desert’ and
‘humps’). The subjects were to determine whether the two features
combined to result in retrieving the memory of a specific object (e.g.,
‘camel’). Other word pairs were chosen to lead to no retrieval (e.g.,
‘mane’ and ‘wings’). Subjects were instructed that the target needed to
be a specific object, not merely an association between the twowords.
Fifty trials comprised stimulus pairs that have been shown in previous
work (Assaf et al., 2006; Brier et al., 2008) to elicit retrieval of a specific
object, and 50 were non-retrieval trials. The same feature words used
in the object retrieval pairs were used in the non-retrieval pairs, but
were re-paired with a semantically unrelated word. Each word pair
appeared on the screen for 3 s, separated by a blank screen that
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appeared for 2–3 s (randomized). While it is true that the researchers
defined which word pairs should or should not elicit retrieval, the
small number of ‘incorrect’ responses indicates that this task does
access semantic memory. The few trials with incorrect responses were
also discarded.

Data acquisition

EEG data were acquired with a 64-channel, Synamps II system
(Compumedics, Inc.). Data were sampled at 1 kHz and hardware
filtered at 200 Hz. Electrode impedances were typically below 5 kΩ,
although some were slightly higher. An experienced EEG technician
preprocessed the data manually. First, data recorded from poorly
functioning electrodes were identified visually and removed. Second,
eye blink artifacts were removed by a spatial filtering algorithm in the
Neuroscan Edit software (Compumedics, Inc.), using the option to
preserve the background EEG. This option uses the singular value
decomposition of a ‘clean’ data segment to optimize the removal of
eye blinks from the continuous data (M. Pflieger, personal commu-
nication). Third, time segments containing significant muscle artifacts
or eye movements were rejected.

During acquisition, time-locking events were placed in the EEG
record corresponding to the white computer screen, the onset of
word-pair stimuli, and button-press responses of two types. For
spectral analysis, a baseline interval was defined as 1 s prior to the
stimulus. In order to study stimulus-related activity, a peri-stimulus
interval was defined from –1 to 3 s. The data were epoched
accordingly and exported to Matlab (Mathworks, Inc.) for further
analysis. We have begun to explore the benefits of epoching relative
to responses, but for brevity only peri-stimulus results are reported
here.

Reference correction

The datawere recorded with a reference electrode located near the
vertex, which results in small amplitudes over the top of the head. In
order to correct for this effect, the data were re-referenced to the
average voltage at each time point, which approximates the voltage
relative to infinity (Nunez,1981). In order to minimize a known bias in
the electrode-based average reference (Junghofer et al., 1999), a
spline-based estimate of the average scalp potential (Ferree, 2006)
was computed using spherical splines (Perrin et al., 1989). Placing the
electrode cap on a realistic phantom head, the electrode coordinates
were digitized (Polhemus, Inc.), and these coordinates were used to fit
the splines for each subject. The integrity of the spline interpolation
was confirmed visually, by comparing waveforms of arbitrarily
deleted channels with the original waveforms in those channels.
The integrity of the spline-based average reference was confirmed by
comparing topographic maps of baseline alpha power with similar
maps using the cap reference, and the electrode-based average
reference. In subjects with a small number of bad electrodes, the
splines were used to interpolate those electrodes, to yield a total of 62
data channels in every subject. Ensuring the same number of
electrodes in all subjects facilitates the matrix manipulations in
sequential PCA.

Time–frequency analysis

Throughout the peri-stimulus interval, time-dependent Fourier
power spectra were estimated in 0.5-second wide windows, moving
in 0.05-second steps. The time of each window was defined as the
center of the nonzero data in that window. The earliest time was
−0.75 s, and the latest time was 2.75 s, because the centers of 0.5-sec
windows cannot reach the ends of the epoch. Fourier power spectra
were computed using the pwelch function implemented in Matlab
(Mathworks, Inc.). In each window, the time series was linearly
lysis of EEG data using within-subject statistical tests followed by
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detrended to reduce spectral leakage from the zero-frequency bin,
cosine tapered to reduce spectral leakage generally, and zero-padded
to 1-s duration to achieve 1-Hz frequency resolution. Each time series
was then Fourier transformed, magnitude squared, and suitably
normalized to obtain the power spectral density (PSD) in units μV2/
Hz. For each condition, the result was averaged across all trials, to
obtain the best statistical estimate of the PSD.

The time-averaged PSD in the baseline interval was computed two
ways for comparison. In both ways, the PSD was averaged across all
trials in both conditions. In the first way, the time averaging was
accomplished using the Welch method, in which the 1-s baseline
interval was divided into three 0.5-s windows with 50% overlap
(Welch, 1967). In the second way, the time averaging was accom-
plished by averaging the time-varying PSD over all time points prior to
the stimulus. This was done because we observed in several subjects
that the power values in the Welch windows were not always
representative, occasionally missing large fluctuations and leading to
inaccurate estimates of the temporal mean. The relationships between
the estimates of baseline power, and the effects on PCA-ANOVA and
STAT-PCA, are discussed in the Results.

If the results of our analysis are to be used to explain cognitive
processes in terms of neural oscillations, we should state clearly what
oscillations are included in our analysis. In conventional terminology,
‘evoked’ activity has a precise time and phase relationship with a
temporal event, while ‘induced’ activity does not. The ERP isolates
evoked activity, but spectral analysis is needed to detect induced
activity. Because evoked activity also contributes to spectral power, a
direct application of spectral analysis must be considered to reflect
both evoked and induced activity. Some researchers have attempted
to isolate induced activity, by subtracting the ERP prior to time–
frequency analysis (Kalcher and Pfurtscheller, 1995; Ding et al., 2000;
Truccolo et al., 2002). In the present work, it is not our goal to
distinguish evoked and induced activity, and we have not implemen-
ted any method to subtract the ERP. Our results must therefore be
interpreted to include both evoked and induced activity. Because it is
difficult to maintain phase locking to the stimulus for long times,
however, we expect that later times are dominated by induced
activity, especially at higher frequencies.

Difference-mode and common-mode responses

The standard PCA-ANOVA approach, applied to ERP waveforms, is
usually arranged to test for differences between conditions (Spencer et
al., 1999, 2001; Dien et al., 2003). The calculation of the ERP waveform
in each condition begins with subtracting the baseline, defined as the
average of the pre-stimulus time series across time and trials. Baseline
subtraction is required in ERP analyses, because EEG time series are
prone to slow drift from electrode polarization and imperfect
amplifier properties. Yet activity in the baseline interval may include
residual activity from the previous response and/or anticipation of the
next stimulus. For this reason and others, many ERP researchers prefer
to focus only on differences between conditions.

In the ERD/ERS literature, it is common to quantify brain
oscillations relative to baseline (Pfurtscheller and Lopes da Silva,
1999; Delorme and Makeig, 2004). In the power spectrum, any
electrode or amplifier drift appears in the zero-frequency term, so this
effect is not central. (An exception is that any power in the lowest
frequency bin, e.g., less than 0.5 Hz when using 1-Hz frequency bins,
may contaminate higher frequencies by spectral leakage, but this
effect is minimized by detrending the data in each window before
Fourier transforming.) Of course, the baseline interval may still be
contaminated, by the previous response or anticipation of the next
stimulus. Because the Fourier transform is squared in each trial to
compute power, and because the moving windows have non-zero
width determined by the taper, the same variation in the inter-
stimulus interval may not be as effective.
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Despite the issues inherent to defining and interpreting a baseline
interval, we argue that it is compelling to consider both differences
between conditions and differences relative to baseline in parallel. In
the case of our semantic retrieval task, for example, it seems likely that
studying the words visually, searching for associations, and launching
a motor response are common to both conditions, while retrieving a
word from semantic memory occurs only in one condition. Although
themental processes of semantic retrieval are not yet understoodwell
enough to list and categorize each one, considering both kinds of
activity obviously gives a more complete picture of the data. Consider
a hypothetical example, inwhich there is greater power in condition A
than condition B, for some frequency band and time interval. From this
information alone, any of the following could be true: 1) condition A
has ERS that condition B does not, 2) condition B has ERD that
condition A does not, 3) conditions A and B both have ERS, but
condition A has more, 4) conditions A and B both have ERD, but
condition B has more. Only by studying the differences relative to
baseline is it possible to distinguish these cases.

Following this logic, we define the ‘difference-mode’ response as
the difference of moving-window power spectra between two
conditions, without reference to baseline, and define the ‘common-
mode’ response as the difference of moving-window power spectra
between both conditions and baseline. By both conditions, we mean
the average of the PSD in both conditions, weighted by the number of
trials in each condition; that is equivalent to taking the union of the
trials in both conditions before averaging across trials. The rational for
pooling the responses from both conditions to form the common-
mode response, rather than looking at each response separately
relative to baseline, is that half of the information in the separate
responses is already contained in the difference-mode response, and
the common-mode response is orthogonal to that. Taken together,
therefore, the difference-mode and common-mode responses give the
most complete yet parsimonious view of task-related activity. We
submit the results from both modes separately to PCA. Once the
prominent factors from both modes are identified, these can guide
inference about the behavior in each condition.

To be precise, consider the algebraic definitions of common mode
(CM) and difference mode (DM), assuming the number of trials in the
two conditions is equal. Let R represent the time-varying PSD in the
retrieval condition, N represent the time-varying PSD in the non-
retrieval condition, and B represent the time-averaged PSD in the
baseline interval. At each frequency, electrode, and time point, we
have DM=R−N, and CM=(R+N)/2−B. Solving for R and N gives R
−B=CM+DM/2, and N−B=CM−DM/2. Thus the response in each
condition relative to baseline may be obtained trivially from the
common-mode and difference-mode results. In the present work,
difference-mode STAT-PCA permits a direct comparison with PCA-
ANOVA, and common-mode STAT-PCA gives new information not
accessible with PCA-ANOVA.

Statistical tests for differences between power spectra

In most ERP studies, only the within-subject average response is
carried forward, e.g., to PCA-ANOVA, and neither the number of trials
nor the variance across trials is used. Instead, the statistical ensemble
used to test for differences between conditions is comprised of many
subjects in the study. In our initial attempts, we adopted this
approach, submitting the trial-averaged, time-varying power in each
condition to three-way PCA-ANOVA. Empirically, the results were
unsatisfactory (see Results). Theoretically, a disadvantage of con-
ducting PCA first is that statistical variability in the estimates of the
power spectrum, which are inherent for stochastic signals, might
overly influence the PCA. On these grounds, we hypothesized that
within-subject statistical tests for differences in power spectra, either
between conditions or relative to baseline, would improve the
results.
lysis of EEG data using within-subject statistical tests followed by
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Statistical testing for differences between power spectra is a
reasonably well-developed topic. In its simplest form, the log of the
power spectrum estimate is assumed to be Gaussian distributed. The
estimate based upon a finite number of samples is biased, however, by
an amount that depends upon the number of samples (Thomson and
Chave, 1991; Bokil et al., 2007). Using analytic expressions in these
references, we corrected for this bias and estimated the variance in the
mean using the appropriate number of samples in each case. The bias
correction is a simple function of the number of samples, which is
subtracted from the original calculation of the PSD. In the post-
stimulus interval, the number of samples contributing to the PSD in
each condition was taken to be twice the number of trials in that
condition, accounting for sine and cosine contributions. (In the
calculation of baseline power and the common mode, the number of
trials was equal to the sum of the trials in both conditions.)
Furthermore, in the baseline interval, because the 50% overlap
combined with cosine tapering leads to approximately independent
samples, the number of samples was tripled, corresponding to three
0.5-s windows in the 1-sec baseline interval.

The PSD is computed at many electrodes, frequencies, and time
points. By setting α=0.05, false positives are expected at this rate.
Correcting for multiple comparisons is non-trivial when the data are
correlated. In the spatial dimension, data at different electrodes are
correlated due to volume conduction. In the spectral dimension,
spectral leakage causes neighboring frequency bins to be correlated. In
the temporal dimension, overlapping windows cause neighboring
time points to be correlated. One remedy in the spectral domain is to
keep only contiguous sets of frequencies that are wider than the
bandwidth of the analysis (Bokil et al., 2007), and another is to use the
false-discovery rate (Durka et al., 2004), but neither of these
approaches as published addresses false-positives in the full three
dimensions of space–time–frequency. In the present work, we have
chosen for simplicity not to correct for multiple comparisons. If false
positives occur randomly, they should have little impact on the PCA
analysis applied to multiple subjects. Indeed, the results below
support the assertion that only meaningful, task-related activity
emerges from STAT-PCA.

Input to principal component analysis

This work contrasts two approaches to integrating time–frequency
analysis with statistical tests. In the standard method, PCA-ANOVA,
the time-dependent power values in each condition are input to
sequential PCA (see below) and the resulting scores are passed to
ANOVA. This is a one-way (condition) repeated measures ANOVAwith
two levels (retrievals and non-retrievals). In this approach, the
variance across trials is not retained, and the statistical ensemble
used in the ANOVA is comprised of multiple subjects. In the new
method, STAT-PCA, statistical tests between conditions are conducted
in each subject and electrode separately, and the statistical ensemble
is comprised of multiple trials. Insignificant differences are rounded to
zero, in effect, eliminating noise from the results. Only the non-zero
spectral differences are passed to PCA for data reduction.

Although the statistical tests for differences between spectra in
STAT-PCA assumed that the log-power spectrum is Gaussian dis-
tributed, we used PSD in units of μV/Hz2 not dB as input to PCA. This
choice does not affect the set of frequencies that show significant
differences, but does affect the numerical values submitted to PCA.We
adopted this method after we tried both μV/Hz2 and dB units and the
former gave much better results. The log transformation renders large
power values not so different from the small power values, and this
had several adverse effects on the PCA results: many more factors
retained, less distinctive factor loadings, and poorer agreement with
group averaged data. We therefore kept the units of μV/Hz2 as input to
PCA, consistent with the recommendations of Tenke and Kayser
(2005), but set the differences to zero according to the aforemen-
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tioned statistical test. Even with this choice, which tends to under-
emphasize the power at higher frequencies, we obtained differences
in the 20–35 Hz range that were reported previously in this task
(Slotnick et al., 2002).

Principal component analysis

In our description of PCA, we use standard terminology and matrix
organization, with some small exceptions. The data matrix is arranged
with columns indexing variables and rows indexing samples. Follow-
ing standard conventions in PCA analysis, the column-means are
subtracted, i.e., in each column separately the mean across rows is
subtracted. Following the consensus in the ERP literature (Kayser and
Tenke, 2003; Dien et al., 2005), we use the covariance matrix rather
than the correlationmatrix. With this convention, PCA is equivalent to
singular value decomposition (SVD): the right eigenvectors are called
the component or factor ‘loadings’, and the left eigenvectors times the
singular values are called the component or factor ‘scores’.

In ERP analysis, PCA has been applied sequentially to reduce the
results in the spatial and temporal dimensions. An important
consideration is the order in which PCA is applied to the various
dimensions. An early work applied PCA to the spatial dimension
(Donchin, 1966), and later works applied PCA to the temporal
dimension (Curry et al., 1983; Donchin and Heffley, 1979; Mocks and
Verleger, 1991). More recent works applied PCA spatially then
temporally (Spencer et al., 1999, 2001; Dien et al., 2003). The choice
to apply spatial PCA before temporal PCA for ERP analysis was based
on the argument that ‘components are defined by unique patterns of
scalp distributions’ (Spencer et al., 2001). It has also been suggested to
apply temporal PCA first (Dien and Frishkoff, 2005), because spatial
components may overlap due to volume conduction. Despite all these
well-reasoned arguments, no study has yet compared the effects of
order in sequential PCA.

In our initial investigations, we studied PCA-ANOVA and STAT-PCA
for all six possible orderings of frequency, space, and time. In order to
keep this report tractable, we focus on one order. We arrived at this
order by following one of the earlier arguments, that the best order is
determined by the inherent separability of the data (Dien, 1998). First,
cognitive processes are accompanied by oscillations in characteristic
frequency bands. Bands have nonzero width, but do not typically
overlap. This separability suggests that spectral PCA should be
conducted first. Second, time–frequency analysis involves moving
windows with some non-zero width, and this blurs time resolution
below that of ERP analysis. This suggests that temporal PCA should be
conducted last. On these arguments, we suggest that a sensible
starting point is spectral–spatial–temporal PCA. Based upon our initial
investigations, which spanned all six possible orderings, our impres-
sion is that this ordering produced among the most stable and
sensible results for our data set.

To perform sequential PCA in this order, the data are arranged
into a matrix, with columns indexing frequencies, and rows
indexing the result of concatenating electrodes, time-points,
conditions (PCA-ANOVA only), and subjects. First, PCA is applied
to obtain the spectral loadings, and the largest factors are retained.
For each spectral factor retained, the corresponding factor score is
reshaped to form a matrix with columns indexing electrodes, and
rows indexing the concatenation of time points, conditions (PCA-
ANOVA only) and subjects. Second, PCA is applied to obtain the
spatial loadings, and the largest factors are retained. For each
spatial factor retained, the corresponding score is reshaped to form
a matrix with columns indexing time points, and rows indexing the
concatenation of conditions (PCA-ANOVA only) and subjects. Third,
PCA is applied to obtain the temporal loadings, and the largest
factors are retained. In PCA-ANOVA, the temporal scores are
submitted to ANOVA. In STAT-PCA, the temporal scores are simply
kept as the final result.
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Factor retention

Themain objective of PCA is dimension reduction, but determining
the precise number of components or factors to retain is notoriously
difficult (Zwick and Velicer, 1986; Hayton et al., 2004). All of the
standard methods are based upon the eigenvalues. The goal is to
identify a small set that capture most of the data variance, and are
distinct from the remaining set of smaller eigenvalues. In the simplest
method, the eigenvalues are plotted in a ‘scree’ plot, and the cut point
is determined by eye (Cattell, 1966). Despite its wide use, this method
is highly subjective, especially when the eigenvalues decrease
gradually, or when there are several distinct steps. In the present
data, we often have one very large eigenvalue, followed by one or
more visible steps. To make the choice less subjective, we implemen-
ted two statistical techniques that should bracket the best choice.

The first technique is the maximum profile likelihood (MPL),
which aims to determine the cut point that leads to the most natural
grouping of eigenvalues (Zhu and Ghodsi, 2006). After exploring this
technique extensively, we have arrived at the following impressions.
When a few eigenvalues are large and similar, standing well above
the others, MPL picks these few. When the first eigenvalue is much
larger than the others, MPL tends to pick it, even if there is a
second elbow in the scree plot just a few points away. In this way,
MPL appears either to perform well, or to underestimate the
number of factors. MPL has the advantage of being very efficient
computationally.

The second technique is parallel analysis (PA), which is based upon
rejecting the null hypothesis that the eigenvalues are the same as
those of a random matrix with the same dimensions and distribution
of values (Horn, 1965). Comparison studies using model data agree
that this is the most reliable technique (Zwick and Velicer, 1986;
Hayton et al., 2004), although it is not widely used. One study showed
that, when PA is wrong, it tends to overestimate the number of factors
to retain (Zwick and Velicer, 1986), although another study points out
that PA tends to underestimate the number of factors when the first
eigenvalue is large (Turner, 1998). Despite having a single large
eigenvalue in our data, we have found that PA always estimates more
factors than MPL.

In order to generate randommatrices for PA, we shuffled the values
in the original matrix and computed the eigenvalues using identical
procedures. For each eigenvalue generated from the null distribution,
we computed the mean across the 100 random matrices. Eigenvalues
from the real matrix that were greater than the mean eigenvalue from
the random matrices were considered descriptive of the covariance
structure of the data. The use of themean has precedent (Hayton et al.,
2004), but has also been criticized as setting the false-positive rate to
0.5. An obvious remedy is to set the false-positive rate to 0.05
(Glorfeld, 1995), but this requires many more random matrices,
because evaluating the tails of a distribution is muchmore demanding
computationally than evaluating the mean. Because PA is already
quite demanding, and because a large false-positive rate corresponds
to overestimating the number of factors, we used the mean of 100
random matrices as the threshold, and we interpret this PA estimate
as an upper bound.

Factor rotation and refinement of factor retention

PCA decomposes a datamatrix into orthogonal components. While
this is often effective for separating signal and noise subspaces, it is
well known that the factors retained according to relative variance
alone may not provide the most useful factorization of the signal. For
this reason, it is normal to apply an additional transformation, such as
factor rotation, to satisfy some additional constraint. In the present
work, we focus on Varimax rotation, which aims to simplify the
structure of each factor by loading its variance onto the smallest
number of elements. In applications to ERP data, there is general
Please cite this article as: Ferree, T.C., et al., Space–time–frequency ana
sequential PCA, NeuroImage (2008), doi:10.1016/j.neuroimage.2008.09.017
agreement that Varimax rotation helps separate distinct cognitive
components (Kayser and Tenke, 2003; Dien et al., 2005).

As described in the previous subsection, the eigenvalue-based
techniques MPL and PA are helpful in determining the number of
factors to retain, but they leave some ambiguity and subjectivity in
the choice. In the present work, we have made inroads toward an
improved method for factor retention. It is based upon the common
understanding that retaining too many factors becomes problematic
when using rotation (Dien et al., 2007). Our idea is to compare the
rotated factor loadings with the data, as a function of the number
of factors retained. In order to compare the factor loadings with the
data, we need some measure of the data that has the same
dimension as the factor loadings. Because the column-means are
subtracted prior to PCA, and because PCA is fundamentally a
variance-based technique, the simplest non-zero data measure is
the column-variance. Analogous to the definition of column-mean
(see above) the column-variance is the variance of each column
using the rows as samples. Of course, the column-variance of the
data matrix contains less information than the full covariance
matrix, but still provides a sensible data measure for evaluating the
rotated factors.

To apply this idea in practice, in each step of sequential PCA, we
plotted the original and rotated eigenvectors along with the normal-
ized column-variance (see Fig. 3). Varying the number of factors
retained within the range bracketed by MPL and PA, we retained the
minimum number of factors necessary to explain the prominent
features in the data. This procedure was carried out to decide the
number of factors to retain in each step of sequential PCA. The choice
to limit the number of factors to the prominent features in the
column-variance, within the plausible range bracketed byMPL and PA,
amounts to a conservative choice of the number of factors, becausewe
know that the full covariance matrix contains more information. This
use of the eigenvectors in conjunction with the eigenvalues to make
choices about factor retention deserves more development, but even
in its present form it is evident that using the rotated eigenvectors in
this way is more rigorous than using the eigenvalues alone.

Factor visualization and interpretation

Decisions about factor retention define a factor tree that associates
each spectral factor with one or more spatial factors, and each spatial
factor with one or more temporal factors. Each set of spectral, spatial,
and temporal factors defines a factor triplet. Spectral and temporal
loadings are plotted as two-dimensional curves, and spatial loadings
are plotted as topographic maps. The loadings are normalized, but the
signs are arbitrary. In order to visualize the spectral and spatial
loadings consistently, we flipped their sign if their maximum absolute
value corresponded to a negative value. Most spectral loadings had a
single peak, although sub-peaks are often present. Most spatial
loadings were either focal or bi-focal maps, appearing to represent
semi-localized oscillators. Most temporal loadings were less compact,
and the choice of orientation was usually arbitrary. In PCA, the
(column-mean subtracted) data matrix is approximated as a product
of spectral, spatial, and temporal loadings. In our conventions, any
negative signs were effectively assigned to the temporal loadings as
follows.

In order to determine the most sensible sign for the temporal
loadings, we compared them to the subject-averaged data. For each
triplet, we selected the peak frequency of the spectral factor, and one
or more peak electrodes of the spatial factor. For these peaks, we
averaged the common-mode and difference-mode PSD values across
subjects. The temporal factors were flipped and scaled to have
maximum similarity with the subject-averaged PSD. Visualization of
the temporal loading along with the group-averaged data confirms
the internal validity of the process, and permits each factor to be
interpreted as ERD versus ERS.
lysis of EEG data using within-subject statistical tests followed by
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Fig. 1. Time-varying power at 10 Hz in electrode OZ for single subject: (a) retrieval
condition (solid), non-retrieval condition (dashed), baseline (dotted); (b) difference
mode (dashed), common mode (solid), zero (dotted). Dots show statistical significance
for pb0.05.
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Metric for component similarity

This paper demonstrates that STAT-PCA performs better than PCA-
ANOVA in several ways, and showing that requires comparing PCA
factors quantitatively. Each factor triplet is comprised of a spectral
loading F, a spatial loading S, and a temporal loading T. For two
triplets: (Fa, Sa, Ta) and (Fb, Sb, Tb), we define the triplet similarity
metric

Cab = FTa Fb
� �

STaSb
� �

TT
a Tb

� �

where T denotes vector transpose. Γab=1 implies a perfect match, and
Γab=0 implies perfect orthogonality. Because small variations in the
data can change the ordering of factors with similar eigenvalues, it is
important to consider all possible orderings. Consider the general
case, in which set A has M triplets, and set B has N triplets. To
compare all pairings of factors from sets A and B, we constructed the
matrix Γab, for a=1,…, N and b=1,…, M. We summarized this matrix
by computing the maximum of each row, to identify for each factor in
set A the most similar factor in set B, independent of order. In order
to generate a summary statistic across subjects, we took the
maximum along the largest dimension of Γ (e.g., if aNb then the
maxima were taken across the rows). This vector was then averaged
to obtain a single global metric for each subject. These values were
subjected to a paired t-test to determine if STAT-PCAwas in fact more
stable than PCA-ANOVA.

Results

Time-varying power and mode transformation in single subjects

Fig.1a shows the time-varying power for a single subject, electrode
OZ, frequency 10 Hz, relative to the Welch baseline power. Both
conditions show power fluctuations during the baseline interval,
decreased power after stimulus presentation, and a return toward
baseline starting near 1 s. Fig. 1b shows the difference-mode (dashed)
and common-mode (solid) responses. The common mode captures
the strong decrease that is common to both conditions. The difference
mode is much smaller, although some deflections are visible.

Fig. 1a also shows with dots the time points at which the power in
each condition was significantly different from baseline (pb0.05).
Neither conditionwas significantly different from baseline prior to the
stimulus. Fig. 1b shows with dots the time points at which the power
in each mode was significantly different from baseline (pb0.05). The
common mode (solid dots) was significantly different from baseline
only after the stimulus. The difference mode (open dots) showed
significant differences sporadically, including some points prior to the
stimulus. Because the stimuli were randomized, there can be no
systematic difference in baseline between the two conditions. We
conclude that the differences between conditions prior to the stimulus
are due to random variations, and the points that passed the statistical
test in this interval are false positives. Because false positives occur
randomly across subjects, however, they are not expected to influence
the PCA applied to multiple subjects.

Results of automated tests for factor retention

Fig. 2 shows spectral eigenvalue plots computed for PCA-ANOVA
and STAT-PCA in difference mode. The filled dots show MPL and PA
recommendations for the number of retained factors. In all cases
shown, MPL=1 or 2, and PANMPL. Fig. 2a was found for PCA-ANOVA
without baseline subtraction. The second factor represents 60 Hz
noise, as described below. Fig. 2b was found for PCA-ANOVA with
baseline subtraction. Even though the MPL and PA values for factor
retention in Fig. 2b are identical to those in Fig. 2a, baseline
Please cite this article as: Ferree, T.C., et al., Space–time–frequency ana
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subtraction moves 60 Hz noise from the second factor to beyond
the fifth factor. Fig. 2c was found for difference-mode STAT-PCA, and
Fig. 2d was found for common-mode STAT-PCA. Broadly speaking,
the eigenvalue plots for STAT-PCA are similar to PCA-ANOVA,
featuring 1–2 large values, followed by a small set preceding an
elbow in the range 5–8. The values for MPL and PA bracket any
visible elbow, except in this example of common-mode STAT-PCA.
Further exploration of factor retention choices in common-mode
STAT-PCA showed that, although there appears to be a step after five
factors, only two factors were interpretable.

Refined factor retention using factor rotation

The MPL and PA algorithms provide useful guidelines for the
number of factors to retain. In order to select a number within this
range, we used additional information about how the rotated
eigenvectors correspondwith the column-variance of the data matrix.
Fig. 3 shows the un-rotated (thin dashed lines) and rotated (thin solid
lines) alongwith the column-variance (thick solid line), for difference-
mode spectral STAT-PCA, and four choices of the number of retained
factors K. For K=1, the eigenvector (black) captures the low-frequency
behavior of the column-variance, but ignores the narrow alpha peak
and broad beta peak. For K=2, the first eigenvector (black) behaves
similarly, and the second eigenvector (blue) captures the alpha peak.
lysis of EEG data using within-subject statistical tests followed by
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Fig. 2. Scree plots for spectral PCA: (a) PCA-ANOVA without baseline subtraction, (b) PCA-ANOVA with baseline subtraction, (c) STAT-PCA in difference mode, and (d) STAT-PCA in
common mode. Filled dots indicate MPL and PA choices for factor retention; in all cases MPLbPA.
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The effects of rotation are minimal in this case. For K=3, the roles of
the first two eigenvectors are unchanged, and the third eigenvector
(red) is quite complicated, including peaks at 1 Hz, 4 Hz, 11 Hz, and
29 Hz, with non-uniform signs. Again the effects of rotation are
minimal. For K=4, the roles of the first two eigenvectors are again
unchanged. Although the third eigenvector (red) is still complicated, it
is simplified slightly by losing much of its peak at 29 Hz after rotation.
The fourth eigenvector (green) isolates 29 Hz almost exclusively after
rotation. We used these arguments to support the choice of K=4 in
this example, and note that this choice is well within the upper limit
recommended by PA (Fig. 2c). A similar procedure was used to select K
for each step of sequential PCA.

Retention of 60 Hz noise in PCA-ANOVA

In our initial explorations with PCA-ANOVA we passed the time-
varying PSD in both conditions to PCA,without baseline subtraction.We
kept frequencies up to 100Hz to see if any high-gammaactivity could be
found. We found that without baseline subtraction one of the largest
components (second spectral factor, fifth spatial factor, third temporal
factor) that survived the ANOVA (F(1,48)=5.74; p=0.0205) reflected
60Hznoise. The spectral loading had a single, narrowpeak at 60Hz. The
spatial loading was peaked near the ground electrode, consistent with
theory (Ferree et al., 2001). The time course of the temporal factor was
non-descript. We had not anticipated this result, because ANOVA was
supposed to isolate differences between conditions, and the difference
in 60 Hz noise between conditions should be negligible.

An explanation for why this happens is as follows. When
conducting spectral PCA, the data matrix has rows that include
Please cite this article as: Ferree, T.C., et al., Space–time–frequency ana
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electrodes, time points, conditions (PCA-ANOVA only) and subjects.
Prior to forming the covariance matrix, the column-means are
subtracted from the data matrix, consistent with the usual definition
of covariance matrix. The column-variances are generally non-zero,
however, even for the 60 Hz column. Because this feature dominates
the covariance matrix, 60 Hz noise emerges as one of the largest
factors. While it may be possible to dismiss this, saying that 60 Hz
noise is easily filtered, or that one could simply limit the frequency
range to 1–50 Hz, we view this as an indication that PCA-ANOVA failed
to isolate task-related differences between conditions. Attempting to
remedy this problem, we subtracted the baseline power from the
moving-window PSD in each condition, in analogy with ERP analysis.
We found that the 60 Hz factor no longer reached significance in the
ANOVA, and tentatively concluded that we had solved this problem.

Sensitivity of PCA-ANOVA to the definition of baseline power

We considered two ways of estimating the baseline power
spectrum. The first way was based upon the Welch method, using
50% overlapping windows. In the 1-sec baseline interval, this gives
three 0.5-s windows that are nearly independent with the cosine
tapering. As shown in Fig. 1, power varies in the baseline interval. The
second way was based upon averaging the time-dependent power in
all moving windows (0.05 s steps) within the baseline interval. The
two ways of computing the baseline power give slightly different
results, because the Welch estimate can be seen as three samples
amongmany obtainedwith slidingwindows. Fig. 4 shows scatter plots
comparing the two ways of computing the baseline power in a single
subject (a) and all subjects (b). In the single-subject case, for this
lysis of EEG data using within-subject statistical tests followed by
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Fig. 3. Illustration of strategy for factor retention, shown for spectral STAT-PCA in differencemode. The thick solid curve represents the column-variance of the data array. Thin dashed
curves represent eigenvectors before rotation. Thin solid curves represent eigenvectors after rotation. As more factors are retained, their eigenvectors are colored as follows: first
(black), second (blue), third (red), fourth (green).
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particular subject, the two estimates are highly correlated, suggesting
small variability in power during the baseline interval. In the all-
subject case, some values deviate far from linearity, revealing large
baseline variability in some subjects. Further analysis revealed that
these deviants come from one subject mainly, and 2–3 others
Fig. 4. Comparison of baseline power in two methods of computing for (a) single subject, (b)
axis shows results for 90% overlap (averaging all values in moving-window PSD estimate).
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secondarily. Yet these subjects are not ‘bad’ per se, as their EEG
appear fine, and their responses to the stimulus are visible.

In PCA-ANOVA, the two methods of computing baseline power,
Welch 50%-overlap estimate and sliding-window 90%-overlap esti-
mate, gave three factors. Table 1 shows the triplet similarity matrix
all 25 subjects. Horizontal axis shows results for 50% overlap (Welch method). Vertical

lysis of EEG data using within-subject statistical tests followed by
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Table 1
PCA-ANOVA: baseline power

Triplet similarity metrics for two estimates of baseline power in PCA-ANOVA. Both
estimates (50% overlap, 90% overlap) gave three significant triplets.
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that compares the results. We found max(Γab)=0.0713, which implies
poor correspondence between the two solutions. We conclude that
PCA-ANOVA is highly sensitive to the definition of baseline power.

In STAT-PCA, taking the difference between conditions and
keeping only significant differences in single subjects had the effect
of removing 60 Hz activity entirely. Even when concatenating across
subjects, therefore, STAT-PCA is not affected by 60 Hz. The table for
STAT-PCA that would be analogous to Table 1 has ones on the diagonal
and zeros elsewhere. We conclude that STAT-PCA is relatively
insensitive to the definition of baseline power.

Because the definition of baseline interval, and the method of
averaging used to compute baseline power, are rather arbitrary
decisions made by the researcher, with little information available to
confirm the absolute validity of one choice over another, we argue that
any method for analyzing group data should be minimally sensitive to
these kinds of choices. The lack of robustness of PCA-ANOVA to the
definition of baseline power raises serious concerns about reprodu-
cibility of results obtained with this method. In contrast, STAT-PCA
isolates task-related spectral changes reliably, which is the stated goal
of this entire analysis.

Sensitivity of PCA-ANOVA to the deletion of a single subject

When looking for a group effect, it is generally undesirable for one
subject to influence the results excessively. In order to assess stability
of the factors retained, we calculated PCA-ANOVA for the entire group
and compared the results with those obtained by deleting each
subject one at a time. When N=25 subjects were used, four factors
were deemed significant by ANOVA. When a single subject was
removed, three factors were found. That alone raised concern.
Furthermore, of the three triplets found when N=25, only one of
those triplets was found when N=24. We emphasize that the subject
removed was not one of the subjects that exhibited high baseline
variability in Fig. 4b. Indeed, Table 2was recomputed for each of the 25
subjects separately, and similar results were obtained. To quantify this,
we generated the summary statistics as described above and themean
was found to be 0.6870. This implies that PCA-ANOVA is very sensitive
Table 2
PCA-ANOVA: subject deletion

Triplet similarity metrics for entire subject group (N=25) and one subject deleted
(N=24) in PCA-ANOVA. Calculations for N=24 gave a different number of significant
triplets depending upon the subject that was dropped.
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to the deletion of a random subject, making it difficult to generate
reproducible results.

Robustness of STAT-PCA to the deletion of a single subject

In exact parallel to the procedure used to remove a single subject in
PCA-ANOVA, single subjects were removed one at a time from the
STAT-PCA analysis and the results compared to the group. In order to
make the most direct comparison with PCA-ANOVA, only difference-
mode STAT-PCA is shown. Table 3 shows that six triplets were retained
for both N=25 and N=24. Most importantly, the matrix is very nearly
the identity matrix, i.e., not only were the same triplets obtained, but
they were retained in the same order. Table 3 was recomputed for
each of the 25 subjects separately, and similar results were obtained
for nearly all subjects. To quantify this, we generated the summary
statistics as described above, exactly as they were calculated for PCA-
ANOVA. The mean value was 0.9648. The values obtained from PCA-
ANOVA and STAT-PCA were compared using a one tailed t-test and
found to be significantly different (t(24)=1.8655; p=0.0371). This
implies that STAT-PCA is highly stable to deletion of a random subject,
which helps insure reproducible results.

Task-related factors in STAT-PCA

For our group of 25 subjects, STAT-PCA produced two common-
mode (CM) triplets and six difference-mode (DM) triplets. Because the
goal of this paper is to illustrate the methodology, and establish the
internal consistency of the principle components with respect to the
original data, only three examples are presented here. A thorough
description of all the components and their interpretation as cognitive
processes will be presented elsewhere. For each triplet below, thick
curves represent factor loadings, and thin curves represent the group-
averaged PSD at particular frequencies and electrodes as noted. In
topographic plots, the color scale is dark for small values, red for
intermediate values, and white for large values. The display of
electrodes on the head model is slightly compressed, so that inferior
occipital electrodes are also visible.

Fig. 5 shows common-mode triplet CM (1,1,1). The spectral loading
has a prominent peak at 11 Hz, with a smaller peak near 2 Hz. The
spatial loading is spread over occipital–parietal cortex, and is slightly
left-lateralized to peak at electrode PO3. The temporal loading is
shown with the group-averaged, common-mode PSD at 11 Hz and
electrode PO3 (thin line). Both the loading and data start near zero, fall
abruptly until 1 s, then return toward baseline through the rest of the
epoch. The temporal loading matches the group-averaged data
remarkably well, confirming the internal validity of this factor, and
showing that this triplet reflects ERD not ERS.

Fig. 6 shows difference-mode triplet DM (4,1,1). The spectral factor
has a single, prominent peak at 29 Hz. The spatial topography has two
distinct peaks, bilaterally distributed in frontal electrodes F5 (left) and
ble 3
AT-PCA: subject deletion

riplet similarity metrics for entire subject group (N=25) and one subject deleted
=24) in STAT-PCA. Calculations for N=24 gave six significant triplets consistently.
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Fig. 5. STAT-PCA triplet CM (1,1,1). The temporal factor (thick line) is plotted with the group-averaged PSD at 11 Hz and electrode PO3 (thin line).
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AF4 (right). Because the display of the electrodes is slightly compressed,
F5 is actually more lateral than indicated in the graph. The temporal
factor (thick solid line) is shown with the group-averaged, difference-
mode PSD at 29 Hz, for electrodes F5 (thin solid line) and AF4 (thin
dashed line). The time course of this factor and both electrodes are
nearly identical. This supports the validity of finding this bifocal map,
and suggests functional coupling between these locations.

Fig. 7 shows difference-mode triplets DM (1,1,1) and DM (1,1,2). The
spectral factor is peaked at 1 Hz, falling to zero by 9 Hz. This low-
frequency power is not merely an artifact due to spectral leakage from
the zero-frequency bin, because 1) we used linear detrending to
compute power spectra, and 2) difference-mode involves subtracting
two conditions and the amount of spectral leakage should not depend
strongly upon condition. The topography has a primary peak at
electrode PO7, and a secondary peak at electrode AF3, perhaps
extending to AF4. The temporal factor (thick solid line) is plotted with
the group-averaged, difference-mode PSD at 1 Hz, for electrodes PO7
(thin solid line) and AF3 (thin dashed line). Overall, the temporal
behavior of electrode PO7 and electrode AF3 are quite similar,
although PO7 is larger for tb0.5 s. The difference in the temporal
factors is that DM (1,1,1) reflects the late behavior that peaks around
t≈1.3 s, while DM (1,1,2) reflects the early behavior that is confined to
tb0.5 s. An explanation of how and why PCA separated these two
temporal factors is given in the Discussion.

Discussion

Time–frequency analysis of multi-electrode EEG data in cognitive
studies yields high-dimensional numerical results spanning space,
time, frequency, conditions and subjects. There is a clear need to
reduce and summarize these data, with the goal of isolating distinct
neural processes involved in the task. Our initial attempt to extend the
established technique of PCA-ANOVA to the frequency domain
revealed three main shortcomings: 1) isolation of non-task-related
Fig. 6. STAT-PCA triplet DM (4,1,1). The temporal factor (thick solid line) is plotted along with
AF4 (thin dashed line).
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differences between conditions (e.g., 60 Hz noise), 2) sensitivity to the
precise definition of baseline power, and 3) sensitivity to the deletion
of a single subject. We developed a new approach, called STAT-PCA,
which advocates within-subject statistical testing followed by PCA.
STAT-PCAwas demonstrated to remedy all three of the short-comings
of PCA-ANOVA, and yield components that have visible agreement
with the group-averaged data. Upon close consideration, it makes
intuitive sense that isolating task-related differences in single subjects
improves the performance of PCA, because PCA always arranges the
largest contributors to variance in its first few components. Only if the
interesting data features are also the largest data features will PCA
arrange them properly. Furthermore, STAT-PCA requires that a power
difference reach significance in the single subject before it can
contribute to the covariance matrix, while PCA-ANOVA considers all
contributions that may or may not be significant within single
subjects. For this reason, we propose that STAT-PCA is conceptually
more rigorous than PCA-ANOVA. Finally, STAT-PCA permits the study
of activity that is not only different between conditions, but also
common to both conditions.

Sequential PCA produces factors that branch like a tree. The first
PCA, in this case spectral, gives several factors. For each spectral
factor, the second PCA, in this case spatial, gives one or more factors.
For each spatial factor, the third PCA, in this case temporal, gives one
or more factors. In this way, sequential PCA can tease apart features
of the data that differ only at lower levels. An example of this is DM
(1,1,1) and DM (1,1,2), which share spectral and spatial factors, but
have different temporal factors. At first this separation may seem
arbitrary, but it occurred presumably because of structure in the
covariance matrix. The fact that this separation is visible in the
group-averaged data provides corroborating evidence that this
separation is valid. It is therefore a success of STAT-PCA to
disambiguate these factors, and we interpret them as distinct
physiological processes that likely have distinct interpretations in
terms of cognitive processing as well.
the group-averaged, difference-mode PSD at 29 Hz, for electrodes F5 (thin solid line) and
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Fig. 7. STAT-PCA triplets DM (1,1,1) and DM (1,1,2). The temporal factor (thick solid line) is plotted with the group-averaged, difference-mode PSD at 1 Hz, for electrodes PO7 (thin solid
line) and AF3 (thin dashed line).
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Varimax rotation was applied to spectral, spatial, and temporal
dimensions. By definition, it produces eigenvectors that are concen-
trated on a few elements, but those elements need not be proximal to
each other. In the spectral domain, most factor loadings had a single,
prominent peak, with one or more small sub-peaks. This situation is
consistent with prior knowledge that task-related cortical oscillations
tend to be relatively narrow-banded, and different bands tend not to
overlap. In the spatial domain, Varimax rotation produces maps
involving few electrodes, but these electrodes need not be adjacent, as
seen in Figs. 6 and 7. In the temporal domain, the loadings tended to be
less compact, reflecting sustained neural oscillations during the task.
Despite this tendency, temporal factors may be compact, as seen in
Fig. 7.

Unlike the standard method PCA-ANOVA, which requires multi-
ple subjects as samples for the ANOVA, a major strength of the new
method, STAT-PCA, is the ability to analyze single subjects. Because
the goal of the present paper was to compare STAT-PCA with PCA-
ANOVA, however, we applied the two methods on equal footing,
focusing on group analysis. It might be supposed that, because PCA is
a variance-based technique, multi-subject PCA would be more
sensitive to inter-subject differences than commonalities. We argue
against this possibility on several grounds. First, we showed stability
of the factors under deletion of single subjects, thus no single subject
(remembering that some subjects can be considered outliers) overly
influences the results. Second, in Figs. 5–7 the high correlation
between temporal factors (thick lines) and group-averaged power
(thin lines) confirms that the STAT-PCA factors reflect the group-
averaged behavior. Third, we have begun a follow up study in which
we have done single-subject analysis using STAT-PCA, and have
found preliminarily that the major factors that emerge for the group
are visible in most of the single subjects. Beyond these points, group
analysis provides advantages over single-subject analysis, because
only in group analysis is the last (temporal) dimension submitted to
PCA. As noted above, Fig. 7 shows how, for a particular spectral and
spatial factor, the temporal PCA identified two temporal factors. In
order to do this last (temporal) PCA, we had to use subjects as
Please cite this article as: Ferree, T.C., et al., Space–time–frequency ana
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samples. When doing single-subject STAT-PCA, the last (temporal)
factors must be obtained as the scores of the previous (spatial) PCA,
thus there can be only one temporal factor for each spatial factor. For
this reason, it would not have been possible to separate the two
temporal factors shown in Fig. 7 in single subjects. Future work will
investigate thoroughly the relationship between group and single-
subject analyses, especially because the latter is necessary for clinical
diagnosis.

A related approach, multi-way or parallel factor (PARAFAC)
analysis, has also been applied to reduce space–time–frequency data
(Miwakeichi et al., 2004). Because it operates on all three dimensions
simultaneously, it avoids the issue of ordering in sequential PCA.
Although PARAFAC is receivingmuch recent attention in the literature,
its structure is such that each spectral factor is associated with only
one spatial and temporal factor. It seems unlikely that PARAFAC would
have separated the two processes shown in Fig. 7. Furthermore, it is
often noted that PARAFAC solutions are unique, avoiding the rotation
ambiguity in PCA. Practically speaking, however, the use of PARAFAC
depends upon several choices, including the number of factors to
retain, and constraints between factors in each dimension: orthogon-
ality, positive-definiteness, and compactness. In this sense, the results
of PARAFAC analysis are not unique, and more work is required to
understand the effects of these constraints and the relationship of
PARAFAC with PCA.

Beyond the internal consistencies of STAT-PCA that are the emphasis
of this paper, at least one of the triplets found here is consistent with
published findings in this task. DM (4,1,1) showed that electrodes F5 and
AF3oscillate in the range20–35Hz, andhavenearly identical timecourse.
First, this frequency band was found in this same task using intra-cranial
electrodes (Slotnick et al., 2002). Second, electrode F5 was found
previously by applying PCA-ANOVA to ERP analysis of the same data
set (Brier et al., 2008). Third, the time duration (0.75–1.5 s) is the same as
that of the ERP. Findingwhat appears to be the same neural process with
ERPand time–frequencyanalysis gives further credibility to our approach
developed here, and provides new ideas for how to clarify its functional
role in semantic processing. Because electrodes F5 andAF3oscillate at the
lysis of EEG data using within-subject statistical tests followed by
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same frequency and share the same time course, we hypothesize that
coherence analysis or phase synchrony analysis (Lachaux et al.,1999)will
show these areas to be coupled in the frequency band 20–35 Hz.

In summary, STAT-PCA provides a basis for the reduction of the
results of time–frequency analysis of multi-electrode EEG data into
concise components that facilitate cognitive interpretation. It repre-
sents a paradigm shift for the integration of PCA with statistical
testing, by advocating statistical tests in single subjects prior to PCA. In
this way, PCA is relegated to a purely descriptive role. As a result of the
statistical test occurring first, the factors retained do not need to be
subjected to further statistical testing, which previously has been
highly subjective. We conclude that STAT-PCA represents an exten-
sible platform for the analysis of event-related spectral changes in
cognitive experiments, as well as an adaptive platform for future
developments that should include higher-dimensional (i.e., more than
two-condition) experimental designs.
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Appendix A

Implementation of PCA

In each step of the PCA, the time-varying PSD values are arranged
in a matrix with variables denoting the PCA dimension, e.g., spectral,
spatial, or temporal, and rows denoting the concatenation of the
remaining variables, conditions (PCA-ANOVA only), and subjects.
Given a data matrix X, where rows denote samples and columns
denote variables, the first step of PCA is to subtract the column-means,
i.e., for each column separately the mean across rows is subtracted:

YuX−X :

(Because rows denote samples, the column-mean may be interpreted
as the sample-mean for each variable.)

This mean-subtracted data matrix Y has a singular value decom-
position:

Y−USVT

where U is an orthogonal matrix with columns equal to the left
eigenvectors, S is a diagonal matrix of singular values, and V is an
orthogonal matrix with columns equal to the right eigenvectors. By
definition, an orthogonal matrix satisfies UTU=1; the orthogonality of
the matrix U is accomplished by the orthonormality of each column of
U. The number of non-zero singular values is equal to the lesser of the
number of samples or variables.

The covariance matrix is defined:

CuYTY = USVT� �T
USVT� �

= VS2VT

where the normalization factor (equal to the number of samples
minus one) has been ignored in its definition, because an overall
constant does not affect the decomposition. The last equality arises
from the orthogonality of the matrix U. In the language of PCA, the
right eigenvectors are called the factor loadings, and the elements of
S2 are called the eigenvalues.
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The factor scores W are obtained by projecting the data onto the
orthonormal basis comprised of the factor loadings:

WuYV =US

where the second equality results from the SVD of Y. The factor scores
are not merely the left eigenvectors, but include the singular values. In
this way, the weight, i.e., the singular value, with which each
eigenvector in U enters into the mean-subtracted data is included in
the corresponding score vector.

Varimax rotation is applied to the factor loadings V, resulting in the
rotated factor loadings:

V V= RV :

Varimax rotation preserves inner products between the eigenvec-
tors in V, i.e., orthogonality and normalization, so R is an orthogonal
matrix. Many applications of PCA consider only the factor loadings, so
the effect of rotation on the factor scores is not considered. In the
results presented here, the factor scores were derived by projecting
the mean-subtracted data onto the rotated factor loadings:

W V= YV V:

Only in this way can the original data be considered to be
comprised of the resulting factor scores and factor loadings:

W VV VT = YV VV VT = Y:

Keeping track of the rotation matrix R explicitly:

W VV VT = YRV½ � RV½ �T
= YRVVTRT

= YRRT

= Y

where the third equality arises from the orthogonality of V, and the
last equality arises from the orthogonality of R. In each step of the PCA,
therefore, a subset of the factor loadings were retained and rotated.
For each rotated factor loading, the corresponding factor score was
computed by projecting the data matrix onto that loading. Each of
these ‘rotated’ scores was reshaped to form a new data matrix for the
next step of PCA.
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a b s t r a c t

In daily activities, humans must attend and respond to a range of important items and inhibit and not
respond to unimportant distractions. Our current understanding of these processes is largely based on
perceptually simple stimuli. This study investigates the interaction of conceptual-semantic categoriza-
tion and inhibitory processing using Event Related Potentials (ERPs). Participants completed three Go–
NoGo tasks that increased systematically in the degree of conceptual-semantic information necessary
to respond correctly (from single items to categories of objects and animals). Findings indicate that the
N2 response reflects inhibitory processing but does not change significantly with task difficulty. The
P3 NoGo amplitude, on the other hand, is attenuated by task difficulty. Further, the latency of the peak
of the P3 NoGo response elicited by the most difficult task is significantly later than are the peaks
detected during performance of the other two tasks. Thus, the level of complexity of conceptual-semantic
representations influences inhibitory processing in a systematic way. This inhibition paradigm may be a
key for investigating inhibitory dysfunction in patient populations.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Everyday functioning requires the ability to successfully inhibit
irrelevant stimuli, thoughts, and behaviors (Logan & Cowan, 1984;
Posner & DiGirolamo, 1998). To date, research on response inhibi-
tion has started to localize some of the basic neural processes asso-
ciated with this behavior (Folstein & van Petten, 2008 or Mostofsky
& Simmonds, 2008 for review). However, despite the real world
implications of successful and unsuccessful inhibition, as reported
in Attention Deficit Hyperactivity Disorder (Barkley, 1997; Luu &
Tucker, 2001) and healthy aging (Hasher & Quig, 1997), little work
has focused on how response inhibition changes as tasks become
conceptually more abstract: for example, knowing to stop the car
for red lights, small children, or a stray dog, but not for a few leaves
blowing across the street. Amongst the most commonly docu-
mented manifestations of inhibitory processing are the Event Re-

lated Potentials (ERPs) associated with the Go–NoGo task, in
which participants press a button for one type of stimuli and with-
hold a button response for a second type of stimuli. This task pro-
vides a reliable index of inhibitory processes (Perner, Lang, & Kloo,
2002; Simpson & Riggs, 2006; Weintraub, 2000) and elicits predict-
able changes in the N2 and P3 ERP components. Further, the Go–
NoGo task has been used to effectively measure abstract and rapid
object categorization (Kincses, Chadaide, Varga, Antal, & Paulus,
2006; Siakaluk, Buchanan, & Westbury, 2003; VanRullen & Thorpe,
2001). The goal of this study is to investigate how inhibitory pro-
cessing changes as the cognitive demands necessary to respond be-
come systematically less perceptual and more conceptual-
semantic in nature.

To date, ERP research has identified two components that relate
to inhibitory processing, the N2 and P3 components. Both of these
components display larger amplitudes when inhibiting a motor re-
sponse compared to what is elicited during execution of the re-
sponse. The N2 is found over fronto-central areas, peaking around
250 ms after stimulus presentation. The P3 is a fronto-central com-
ponent peaking around 300 ms after stimulus presentation. The
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relationship between the N2, the P3, and inhibitory processing is de-
bated (Bruin, Wijers, & van Staveren, 2001; Lavric, Pizzagalli, & For-
stmeier, 2004; Smith, Johnstone, & Barry, 2006, 2007, 2008). Some
argue that the inhibitory processes are manifested in the N2 (Ciesiel-
ski, Harris, & Cofer, 2004; Jodo & Kayama, 1992; Kopp, Mattler,
Goertz, & Rist, 1996; van Veen & Carter, 2002), while others argue
that the P3 is a more likely candidate as a measure of inhibition
(Bruin et al., 2001; Smith et al., 2006, 2007, 2008). There is, however,
a general consensus that both are markers of inhibition to some de-
gree (Smith et al., 2007). The present study does not aim to differen-
tiate these components, but to uncover whether and how each of
them is influenced by conceptual-semantic processing.

The literature addressing the influence of stimulus type and
stimulus presentation on the inhibitory N2 and P3 components
has been varied in regard to methodologies and outcomes. Increas-
ing task difficulty by methodological manipulations such as
increasing the speed with which participants had to respond (Jodo
& Kayama, 1992) resulted in an increase in the N2 NoGo amplitude
but no change in the P3. Similarly, Nieuwenhuis, Yeung, and Cohen
(2004) found that as the perceptual overlap between the Go and
NoGo stimuli increased (for example, discriminating T from F)
the amplitude of the N2 NoGo response also increased. When the
task difficulty has been more semantic as opposed to perceptual,
i.e. stopping on the word ‘‘go” and going on the word ‘‘stop”, a de-
crease in the N2 and P3 amplitudes has been reported (Schapkin,
Falkenstein, Marks, & Griefahn, 2006). Thus, the limited research
to date indicates that while increases in perceptual difficulty may
result in increases in the N2 responses, conceptual and semantic
increases in task demand appear to result in a decrease in the
amplitudes of the N2 and P3 responses.

The goal of this study is to delineate how inhibitory processes
are influenced by conceptual-semantic processing in a systematic
way. To investigate this question we used object categorization, a
core cognitive ability that calls on both perceptual and concep-
tual-semantic knowledge (French, 1995; French, Mareschal, Mer-
millod, & Quinn, 2004; Goldstone & Barsalou, 1998; Murphy &
Kaplan, 2000; Schyns, Goldstone, & Thibaut, 1998). Categories at
the basic level, such as dogs, horses, and birds can be formed and
differentiated from one another based on perceptual features
(French et al., 2004). In fact, it has been found that pre-lingual in-
fants as young as 3–4 months of age can group dogs as distinct
from cats based on quite complex commonalities and differences
in their component visual features (French et al., 2004). However,
often times we need categories that extend beyond perceptual
similarities. One example would be the category ‘animals’, which
includes disparate perceptual entities such as a snake and an ele-
phant. In forming these equally important categories humans must
rely more heavily on abstract conceptual and semantic processes.

Using ERP responses to the Go–NoGo paradigm for abstract cat-
egories of objects and animals, Thorpe and Fize (1996), reported
differences between Go (objects) and NoGo (animals) trials by
about 150 ms over frontal areas, even using animals in complex
scenes compared to a wide range of non-animal target items as
the stimuli. The authors concluded that this was a marker of the
human capacity to categorize perceptually dissimilar items into
conceptually meaningful categories at an ‘‘ultra-rapid” pace. Given
the use of a Go–NoGo paradigm, it is likely that the differences re-
ported in this study were also related to the N2 inhibitory process,
meaning that the two processes of inhibition and categorization
operate contemporaneously, and are mediated in the same or clo-
sely approximated brain regions. However, the study did not em-
ploy multiple levels of categorization from perceptually-based to
abstract. As a result, the nature of this interaction remains unclear.

In this study, we address the issue of how inhibitory processes
and conceptual-semantic complexity interact by using three differ-
ent inhibition Go–NoGo tasks which each require different levels of

semantic abstraction to make a correct response. Each includes Go
items presented 80% of the time and NoGo items presented 20% of
the time. The ‘‘Single” task includes one image of a car (Go) and one
image of a dog (NoGo). Because the identical images are repeated,
the perceptual properties of the items stay identical, limiting the
need to categorize across distinct images to respond correctly.
The ‘‘Multiple” task contains multiple pictures of cars (Go) and
multiple pictures of dogs (NoGo) that vary in orientation and sub-
ordinate type of item (e.g., SUVs, trucks, convertibles, beagles, great
danes, golden retrievers). Thus, correctly responding requires some
item-level identification across category exemplars that can be
accomplished by focusing on common perceptual features of the
items (legs, eyes, wheels, windshields) and then grouping them
based on their semantic item-level representation (dog or car). It
is important to note that responses to this task can also be made
on the supra-ordinate level of object or animal, but only one basic
item from each supra-ordinate (i.e., only dogs, as opposed to dogs
in addition to other animals) category was used. The ‘‘Semantic”
task is the least perceptual, most conceptual-semantic task. It in-
cludes a wide range of perceptually dissimilar non-animals (Go),
from the categories of clothing, tools, furniture, and vehicles and
a wide range of animals (NoGo), including a spider, a worm, a lob-
ster, and a dog. Although there are some perceptual features that
can be used to identify the animals as distinct from all other items,
such as eyes and legs, these were kept to a minimum, biasing to-
ward a focus on the semantic categorization of items. In addition,
we have included a more standard Go–NoGo design (‘‘Standard”),
using arrows (Go) and octagons (NoGo) which should elicit pre-
learned inhibitory responses as a check that the expected inhibi-
tory responses are being elicited.

This design allows us to address our primary question: do inhib-
itory processes as measured by the N2 and P3 components vary
based on the amount of perceptual and conceptual-semantic infor-
mation necessary to correctly respond? We predict that each of
these tasks, regardless of difficulty, will require inhibitory process-
ing that will result in larger amplitudes for the NoGo items com-
pared to Gos in the N2 and P3. By comparing across tasks we can
investigate the interaction between inhibitory processes and con-
ceptual-semantic information. We predict that if the differences
between Single, Multiple, and Semantic are the result of a difficulty
in distinguishing the Go items from NoGo items on a perceptual le-
vel, the N2 NoGo amplitudes will decrease systematically with dif-
ficulty. Specifically, Semantic would be significantly larger than
Multiple which would be significantly larger than Single. In this
case, there would be no corresponding changes in the P3. However,
we predict that these differences will not be perceptual, but con-
ceptual in nature, which would influence the P3 amplitude, partic-
ularly a decrease with semantic-conceptual difficulty as well as a
decrease in the N2 amplitude.

2. Methods

2.1. Subjects

Thirty-five subjects were recruited from the University of Texas
at Dallas community via word of mouth and web-based advertis-
ing. All subjects were between the ages of 18 and 31. The subjects
were all college students with at least 12 years of education. Sub-
jects were screened, per exclusion criteria, to be free from history
of traumatic brain injury and other significant neurological issues
(CVA, seizure disorders, history of high fevers, tumors, or learning
disabilities). Exclusion criteria also included left-handedness, use
of alcohol or other controlled substances within 24 h of EEG
administration, and medications other than over-the-counter anal-
gesics and birth-control pills.
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Subjects were not included in the final analysed data set if one
or more tasks included major movement artifact, failure to com-
prehend the instructions, errors of omission or commission above
20%, or excess noise (N = 3). Thus, data from 32 subjects across all
four tasks were fully analysed. The pool of included subjects was
14 males and 18 females. Informed written consent was collected
from each subject according to the rules of the Institutional Review
Board of The University of Texas at Dallas. This study was con-
ducted according to the Good Clinical Practice Guidelines, the Dec-
laration of Helsinki, and the US Code of Federal Regulations.

2.2. Stimuli

Four different tasks were developed, each following the basic
Go–NoGo paradigm. In each task, there were 160 (80%) ‘Go’ stimuli
for which the subject was to press a button and 40 (20%) ‘NoGo’
stimuli for which the subject was instructed to withhold a re-
sponse. In each of the four tasks stimuli were presented for
300 ms followed by a fixation point (+) for 1700 ms. All of the stim-
uli were black line drawings fitted to a white 600 � 600 pixel
square.

As can be seen in Fig. 1, in the first task (Standard) the Go stim-
ulus was an arrow and the NoGo stimulus was an octagon. It was
predicted that these images would include semantic information
about the required response, with an arrow to press a button and
an octagon (like a stop sign) to not press the button. Thus, the
items were predicted to be cognitively rudimentary compared to
the stimuli used in the subsequent tasks. In the second task (Sin-
gle), the Go stimulus was a line drawing of a car and the NoGo
stimulus was a line drawing of a dog. Because the exact same
images were repeated multiple times, no categorization of percep-
tually variable items was necessary for making a response. As such,
this is the most perceptually-based condition. In the third task
(Multiple), the Go stimuli included 40 cars and the NoGo stimuli
included 10 dogs, which were each repeated four times each. To in-
crease the amount of perceptual similarity, all of the images of cars
and dogs were drawn as side-views. The images of cars included at
least two wheels, front seat and backseat windows and side-view
mirrors. The images of dogs included at least two legs, an eye, ears,
a nose and a tail. Unlike the Single condition the size and orienta-
tion of the items differed across stimuli, but each exemplar of the

dog and car categories includes these perceptual cues. Each subject
saw each of the cars and the dogs presented in a random order.

In the final task (Semantic), the Go stimuli consisted of 160 ob-
jects (40 food items, 40 cars, 20 clothing items, 20 kitchen items,
20 body parts, and 20 tools) and the NoGo stimuli consisted of
40 animals of varying visual typicality. These ranged from animals
seen frequently in daily life, such as dogs and cats, to those seen
less frequently such as lobsters and elephants. To decrease the reli-
ance on perceptual cues when performing this task, features often
seen in animals were decreased in presentation frequency in the
animal condition and increased in the object condition. For exam-
ple, some of the animals (worm, butterfly, fish) had no legs, while
some of the objects (chair, table, a pair of pants) did have legs. Sim-
ilarly multiple animals without discernable eyes were included,
such as the worm, the fly and the lobster. By limiting the percep-
tual cues that are available in the Multiple and Single conditions
participants were required to rely more on semantic-conceptual
information to make category responses.

The images were from the standardized picture sets Snodgrass
and Vanderwart (1980) and the Boston Naming Test (Kaplan,
Goodglass, & Weintraub, 1983) or were created in-house. All at-
tempts were made to keep the images in a similar style and the line
thickness of all pictures was adapted to range between 5 pixels and
14 pixels to maintain similarity in visual complexity.

Six randomizations were created to eliminate order effect with-
in each task and the order in which the subjects performed the
tasks was counterbalanced to mitigate order effects. The instruc-
tions were identical across tasks with only the important object
names changed, i.e., ‘‘You are going to see pictures of cars (objects)
and dogs (animals). You are to press the button for all cars (objects)
but do not press the button for anything else”. Instructions were gi-
ven verbally and then displayed on the computer screen prior to
each task.

2.3. Data acquisition and preprocessing

Continuous EEG was recorded from 64 silver/silver-chloride
electrodes mounted within an elastic cap (Neuroscan Quickcap)
which are placed according to the International 10–20 electrode
placement standard (Compumedics, Inc.). The data was collected
using a Neuroscan SynAmps2 amplifier and Scan 4.3.2 software
sampled at 1 kHz with impedances typically below 10 kX. Blinks
and eye movement were monitored via two electrodes, one
mounted above the left eyebrow and one mounted below the left
eye. The data were processed to remove ocular and muscle artifacts
in the following way. First, poorly functioning electrodes were
identified visually and removed. Second, eye blink artifacts were
removed by a spatial filtering algorithm in the Neuroscan Edit soft-
ware using the option to preserve the background EEG. Third, time
segments containing significant muscle artifacts or eye movements
were rejected. The continuous EEG data were band-pass filtered
from 0.15 to 30 Hz for analysis. The EEG data were segmented off-
line into 2 s epochs spanning 100 ms before to 1500 ms after the
presentation of the visual stimuli.

2.4. Reference correction

The data were recorded with the ground at AFz and the refer-
ence electrode located near the vertex, resulting in small ampli-
tudes over the top of the head. In order to eliminate this effect,
the data were re-referenced to the average potential over the en-
tire head, which approximates the voltages relative to infinity. In
order to minimize a small bias in the electrode-based average ref-
erence (Junghöfer, Elbert, Tucker, & Braun, 1999), a spline-based
estimate of the average scalp potential (Ferree, 2006) was com-
puted using spherical splines (Perrin, Pernier, Betrand, & Echallier,

Fig. 1. Sample of stimuli used across all four inhibition tasks. Go items were shown
160 times, or 80%, while NoGo were shown 40% or 20%. For the Standard and Single
tasks these specific items were repeated 160 and 40 times. For the Multiple and
Semantic conditions there are example items taken from the larger set.
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1989). Placing the electrode cap on a realistic phantom head, the
electrode coordinates were digitized (Polhemus, Inc.), and these
coordinates were used to fit the splines for each subject. In subjects
with a small number of bad electrodes, the splines were used to
interpolate those electrodes, to yield a total of 62 data channels
in every subject.

2.5. ERP calculation

For each trial and electrode, the mean amplitude of the presti-
mulus interval (�100 ms to 0 ms) was subtracted from each time
point and those data were averaged across trials to create the
ERP. Only those items to which correct responses were given were
included in the analysis. The waveforms for a midline frontal elec-
trode (Fz) can be seen in Figs. 2 and 3.

2.6. Peak analysis

Fig. 4 depicts the grand mean average across the scalp for Multi-
ple, which is typical of all of the studies. Of note is that the N2 and
P3 effects are distinctly visible. The N2 is focused over frontal mid-
line and bilateral sites. The P3, on the other hand, is maximal over a
wide fronto-central area.

The ERP topographies for N2 and P3 responses separately were
averaged across sets of electrodes displaying maximal responses.
Based on previous literature and visual inspection of individual
and group data across the four tasks, we defined two time areas
of interest. For the N2 component we calculated the peak ampli-
tudes over frontal areas by identifying the peak amplitude between
150 and 300 ms for midline frontal electrodes (FPz, FP1, FP2, AF3,

AF4, Fz, F1, F2) for each condition for each participant then averag-
ing across participants. For the P3 effect, the mean peak voltage at
central sites (FCz, FC1, FC2, Cz, C1, C2, CPz, CP1, CP2) was calcu-
lated between 300 and 600 ms.

3. Results

3.1. Behavioral

3.1.1. Error rates: errors of omission
An error of omission is a failure to respond to a Go item. To

determine this tendency across tasks, a 4 (task: Standard, Single,
Multiple, Semantic) � 2 (condition: Go, NoGo) repeated-measures
ANOVA on the percentage of correct Go responses was calculated.
A lower percentage represents more errors of omission. This anal-
ysis revealed a significant task difference, F(3, 93) = 3.88, p = 0.012.
Further there was a significant linear trend, F(1, 30) = 6.82,
p = 0.014 in which percent correct decreased with task difficulty,
as is depicted to Table 1. Following this trend, directed pair-wise
comparisons were performed between each task and the next most
difficult (Standard to Single, Single to Multiple, Multiple to Seman-
tic). On a pair-wise comparison level, none of the comparisons
were statistically significant after Bonferroni corrections were
applied.

3.1.2. Error rates: errors of commission
An error of commission is responding with a button press to a

NoGo item. In this case a higher percentage indicates fewer errors.
To calculate this tendency across tasks a 4 (task: Standard, Single,

Fig. 2. N2 and P3 Go and NoGo responses at Fz for Go (solid) and NoGo (dashed) conditions across all tasks. The traditional N2 and P3 components, which display a larger
amplitude for NoGo than Go responses, can be seen for each condition.
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Multiple, Semantic) � 2 (condition: Go, NoGo) repeated-measures
ANOVA on the percent of correct NoGos revealed no significant dif-
ferences across tasks. These means are also listed in Table 1.

3.1.3. Reaction times
The reaction times for the Semantic task were longer than the

others by approximately 50 ms. To investigate the significance of
processing differences between the tasks we performed a one-
way ANOVA of the reaction times for Go items. The ANOVA re-

vealed a main effect of task, F(3, 93) = 11.32, p < 0.0001. Subse-
quent paired samples t-tests with Bonferroni corrections revealed
significant differences between Semantic and each of the other
tasks, Standard, t(31) = 3.61, p = 0.001, Single, t(31) = 4.74,
p < 0.001 and Multiple, t(31) = 3.68, p < 0.001. Other comparisons
did not reach significance.

3.1.4. Event Related Potentials
A comparison of Go and NoGo waveforms for each task can be

seen in Fig. 2, with a comparison across tasks for Go and NoGo re-
sponses in Fig. 3. In creating the ERPs only correct responses were
included and participants had to have at least 20 artifact-free and
correct response epochs per condition. Across tasks there were no
significant differences in the number of trials included based on a
2 � 3 repeated-measures ANOVA, p > 0.50. The mean number of
epochs included in the participants’ average ERP per condition is
as follows, Goes: Single 120.65, Multiple 130.09, Semantic
122.21, NoGoes: Single 28.94, Multiple 30.09, Semantic 30.28.
Thus, although there is large variability in the error rates of partic-
ipants, this did not differentially influence the number of items in-
cluded in the analysis of each study.

N2. The first question was whether the Go–NoGo N2 inhibitory
effects elicited by each of these tasks were similar across tasks. The
Standard task was assumed to be a baseline against which to com-
pare responses recorded during performance of the three tasks of
interest. To determine this for each task the N2 Go and NoGo
amplitudes were compared at mid-frontal sites between 150 and
300 ms. As can be seen in Table 2 all of the tasks of interest elicited
significantly higher NoGo N2 effects compared to Go effects, in a
pattern similar to the Standard task. The only exception is the
Semantic task, in which the effect is significant at p = 0.01 without
corrections for multiple comparisons, but is not quite significant
when these corrections are taken into account.

The next question was how the N2 components were influenced
by semantic level of representation. Because the Standard task was

Fig. 3. Grand average at Fz across the three inhibition tasks: Single (blue), Multiple (green), and Semantic (red). As can be seen in this depiction there is a decrease in the
amplitude of the P3 with task difficulty. A similar trend in the N2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 4. Grand average of selected electrodes of interest for the Multiple Task: Go
(green) NoGo (red). As can be seen in the figure, the inhibitory Go–NoGo effect was
largest over the frontal areas. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 1
Means and standard deviations of behavioral results across tasks.

Experiment Go correct (%) NoGo correct (%) Reaction times (ms)

Standard 97.5 (4.3) 82.7 (13.4) 307.7 (9.9)
Single 93.9 (17.6) 82.7 (18.9) 293.7 (5.9)
Multiple 93.1 (17.9) 83.3 (18.6) 307.7 (5.8)
Semantic 90.8 (18.2) 82.5 (18.5) 361.1 (10.7)

Table 2
N2 amplitude findings across experiments.

Experiment Go Amp No Go Amp t-Stat p-Value

Standard �3.13 �5.40 3.68 <0.0001*

Single �3.34 �4.62 3.00 0.0022*

Multiple �3.57 �4.79 2.77 0.0005*

Semantic �3.13 �4.18 2.45 0.01

* p < alpha (0.006) with corrections for multiple comparisons.
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a control that is conceptually dissimilar to the three semantic inhi-
bition tasks, in that abstract symbols with preconceived meanings
were used instead of objects and animals, it was removed from
these comparative analyses. A 3 (task: Single, Multiple, Seman-
tic) � 2 (condition: Go, NoGo) ANOVA performed on the midline
frontal electrodes for the average peak amplitude for the time
points between 150 and 300 ms revealed a significant interaction,
F(2, 62) = 17.78, p = 0.04. There was also a main effect of task,
F(2, 62) = 17.08, p = 0.008, and the main effect of condition nearly
reached significance, F(2, 62) = 3.77, p = 0.06. To assess the nature
of this interaction two ANOVAs were performed comparing across
tasks within each condition, Go and NoGo, but neither ANOVA re-
vealed statistically significant interactions.

P3. As with the N2 effects, we first tested the hypothesis that the
expected Go–NoGo inhibition effect was elicited by each of our
tasks. To do so, t-tests were performed on the mean peak ampli-
tudes of the Go conditions compared to the NoGo condition for
each condition between 300 and 600 ms over fronto-central sites.
As can be seen in Table 3, all of the NoGos elicited significantly lar-
ger P3 amplitudes than the Gos, all p’s < 0.0001.

Once the expected inhibition effect was verified in comparison
to the Standard task, the Standard task was removed from further
analyses. To determine how task influenced inhibitory processing
as measured by the P3 Go–NoGo a 3 (task: Single, Multiple, Seman-
tic) � 2 (condition: Go, NoGo) ANOVA was performed. The ANOVA
revealed an interaction, F(2, 62) = 21.30, p < 0.0001, as well as main
effects of task and condition, all p’s < 0.002. To follow up on the
interaction two ANOVAs were performed comparing across tasks
within each condition. The one-way ANOVA on Go amplitudes re-
vealed no significant differences between tasks. However there
were significant differences in the NoGo condition,
F(2, 62) = 5.77, p = 0.005. As can be seen in Table 4, subsequent t-
tests revealed significant differences between Single and Multiple,
and Single and Semantic, but not between Multiple and Semantic.

Because the P3 Go effect is often reported to be maximal at cen-
tral compared to fronto-central areas and this was confirmed based
on visual inspection of our grand averages across the tasks, we also
performed this analysis on the 300–600 ms epoch over centro-
parietal electrodes. To determine how task influenced inhibitory
processing as measured by the P3 Go–NoGo, a 3 (task: Single, Mul-
tiple, Semantic) � 2 (condition: Go, NoGo) ANOVA was performed
at midline centro-parietal sites from 300 to 600 ms after stimulus
presentation, which revealed no significant interaction.

Visual inspection of the data also seemed to show that there
were large latency differences between tasks for the NoGo condi-
tions (see Fig. 3). As a result, we also performed a one-way be-
tween task ANOVA for the NoGo peak latencies between 300 and
600 ms over the fronto-central regions, which revealed significant
task differences, F(2, 31) = 11.51, p = 0.0005. As can be seen in Ta-
ble 5, subsequent t-tests revealed that there were significant differ-
ences between Single and Semantic, and Multiple and Semantic,
but not Single and Multiple. The latency for the Semantic NoGo
P3 (M = 449.42 ms, SD = 68.07) was significantly longer than for
Single (M = 404.30 ms, SD = 54.00) or Multiple (M = 403.33 ms,
SD = 48.91).

4. Discussion

The focus of this study was to investigate how increased levels
of conceptual-semantic processing influence inhibitory processing.
We investigated how behavioral measures and known neural
markers of inhibitory processing (the N2 and the P3 ERPs) differed
across three Go–NoGo tasks that varied systematically based on
conceptual-semantic processing necessary to make the inhibitory
response. Overall, we found that all three paradigms elicited inhib-
itory responses similar to our control task of arrows and octagons,
but did so in ways that increase our understanding of how inhibi-
tory processes and conceptual-semantic processing interact. Spe-
cifically, both the N2 and P3 decreased with task difficulty,
though only the P3 does so significantly. This trend suggests the
influence of an increase in semantic difficulty as opposed to per-
ceptual difficulty (Schapkin et al., 2003). Had perceptual differ-
ences been driving our effects we would have expected an
increase in N2 amplitude and no change in P3, as Nieuwenhuis
et al. (2004) reported after manipulating stimulus discrimination
in a Go–NoGo task.

The known inhibition-related phenomena associated with the
N2, i.e., larger amplitude for NoGo compared to Go responses, oc-
curred in all of our semantic inhibition tasks. This is essential to
addressing our question of how inhibition and categorization inter-
acted. If there were no N2 NoGo differences, then we would have to
conclude that task difficulty slowed the process to such a degree
that stopping a response no longer required the invocation of ac-
tive inhibitory processes. Thus, all of our tasks elicited an inhibi-
tory N2 effect regardless of difficulty, which supports previous
literature.

Although there was a trend towards a decrease in the N2 ampli-
tude with task difficulty, post hoc analyses did not reveal any sta-
tistically significant differences. In general, however, the trend was
as expected.

The amplitude of the P3 to the NoGo stimuli decreased system-
atically, from Single to Multiple to Semantic, as the conceptual-
semantic information needed to make a response became more
complex. There are several findings of interest here. First, it was
the NoGos and not the Gos that were statistically different across
tasks, indicating that inhibitory processes more than attentional
ones are influenced. The second point of interest is that the NoGo
amplitude decreases, as opposed to increasing, with difficulty. This
pattern was also reported by Schapkin et al. (2006). Their task in-
cluded pressing the button for the word ‘‘go” and withholding for
‘‘stop” compared to the more difficult, Stroop-like condition in
which ‘‘go” and ‘‘stop” were reversed. The task difference under
investigation in the current study is also a conceptual-semantic

Table 3
P3 amplitude findings across experiments.

Experiment Go Amp No Go Amp t-Stat p-Value

Standard 2.93 6.04 7.21 <0.0001*

Single 3.04 7.35 5.60 <0.0001*

Multiple 1.89 5.75 5.71 <0.0001*

Semantic 2.26 5.04 5.07 <0.0001*

* p < alpha (0.006) with corrections for multiple comparisons.

Table 4
NoGo P3 amplitude differences between tasks.

Comparison df t-Value p-Value

Single – Multiple 31 2.40 0.001*

Single – Semantic 31 3.29 0.001*

Multiple – Semantic 31 0.99 0.16

* p < alpha (0.012) with corrections for multiple comparisons.

Table 5
NoGo P3 latency differences between tasks.

Comparison df t-Value p-Value (one-tailed)

Single – Multiple 31 0.08 0.94
Single – Semantic 31 2.99 0.002*

Multiple – Semantic 31 3.94 0.0002*

* p < alpha (0.012) with corrections for multiple comparisons.
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one, more so than changes in speed (Jodo & Kayama, 1992) or per-
ceptual similarity between stimuli (Nieuwenhuis et al., 2004).
Thus, the fact that the P3 decreases in amplitude, as opposed to
becoming larger with task difficulty, is consistent with the idea
that the increased difficulty was conceptual as opposed to
perceptual.

There are other possible explanations for this effect. The first is
that decreased P3 across tasks is caused by different levels of
expectation or response preparation across the tasks. Response
preparation can result in the changes in the P3 amplitude indepen-
dently (Smith et al., 2007; Stadler, Klimesch, Pouthas, & Ragot,
2006) and because the P3 may overlap with the CNV or Contingent
Negative Variation (Kok, 1988; Simson, Vaughan, & Ritter, 1977).
Either cause would result in the same outcome. The higher the pre-
dictability of the coming response, the higher the P3 amplitude will
be (Bruin et al., 2001; Ruchkin, Sutton, & Tueting, 1975; Stadler
et al., 2006). Although the probability of target to non-target items
is identical in all three tasks, these effects may be perceptually dri-
ven such that as the visual predictability increases, so does the
amplitude of the P3. In this case, the Single task has only two stim-
uli repeated multiple times resulting in a high level of expectancy
about any given trial. The Semantic task, on the other hand, has
200 different images, making the predictability of a given trial very
low. The Multiple task falls between these two because each stim-
uli is repeated four times and the items within each category nec-
essarily share important perceptual features. Thus, the decrease in
P3 amplitude across these three tasks could be driven by decreased
amounts of perceptual similarity within Go and NoGo conditions.

To some degree this argument is similar to our own. We agree
that the decrease in P3 amplitude is driven by a decrease in the
amount of perceptual information available to form a response.
However we argue that this decrease in perceptual cues results
in an increase in semantic-conceptual processing which in turn
elicits smaller P3 amplitudes. The current data cannot distinguish
between increased semantic-conceptual processing and response
preparation. The only evidence that we have of an influence be-
yond stimulus predictability is that in the current study the N2 also
displays a slight decrease in amplitude with task difficulty. Re-
sponse preparation often only influences the amplitude of the P3
with no corresponding N2 difference (Bruin et al., 2001; Smith
et al., 2007). Future studies may be able to tease these factors apart
by varying item predictability with cues before the stimulus onset,
or varying the inter-stimulus interval.

The second alternative explanation for the decrease in P3 ampli-
tude across tasks is that the increase in reaction time, reaction time
variability, or peak latency increased variability in the individual
P3 peak amplitudes, resulting in a smearing effect and thus a smal-
ler peak amplitude. However, there are reasons to discount this
possibility. For one, the Single and Multiple tasks did not differ sig-
nificantly in reaction times, but the corresponding P3 amplitudes
do differ. Secondly, studies focusing on the factors influencing
the P3 effect have shown that, based on single trial latency adjust-
ment procedures, reaction time and corresponding P3 latency dif-
ferences are less influential in determining the P3 amplitude than
is task difficulty (see Kok, 2001 for review). As a result, it seems
that the systematic decrease in P3 NoGo amplitude from Single
to Multiple to Semantic is the effect of increased conceptual-
semantic complexity across the tasks.

The relative decreases in the N2 and P3 are especially interest-
ing given the potential effects of repetition. The Single task repeats
the identical stimuli 160 and 40 times respectively. In the Multiple
task the stimuli are each repeated four times and the Semantic task
has no repetitions. If repetition alone were driving the N2 and P3
effects we would actually see the opposite trend, in which with
repetition the N2 and P3 amplitudes decrease (Courchesne, Cour-
chesne, & Hillyard, 1978; Polich, 1989; Ravden & Polich, 1998).

The other interesting finding with regard to the P3 was the dif-
ference in NoGo peak latency. The latencies were almost identical
for Single and Multiple tasks, with a significant increase in the
Semantic task. Interestingly, this NoGo latency difference was mir-
rored in the reaction times for Go responses, in which the Semantic
task was significantly longer than the two others. Other studies
have reported a difference in P3 latency with stimulus complexity
(McCarthy & Donchin, 1981).

Overall, the findings indicate that conceptual-semantic process-
ing does influence inhibitory responses in quite specific and pre-
dicable ways. In particular, it appears that inhibition tasks
engaging categorization at a superordinate level influence the P3
effect differently than item/object level inhibitory tasks. We re-
main undecided in the ongoing N2 and P3 inhibitory debate. The
fact that N2 is not significantly affected but that P3 is influenced
means that by about 300 ms, higher level semantic processing is
influencing the inhibitory responses on a neural level. These find-
ings are also of importance because there is a growing body of re-
search focused on applying inhibitory tasks to clinical populations
in order to discern neural markers of inhibitory dysfunction. Thus,
it is vital that the interactions between conceptual-semantic pro-
cessing and inhibition be taken into consideration, or systemati-
cally tested, when designing studies and interpreting inhibitory
processes across populations. Uncovering the range of influence
of inhibitory processing deficits in disorders such as Attention Def-
icit Hyperactivity Disorder, dyslexia, autism, and degenerative dis-
eases will likely necessitate tasks that require higher level
cognitive processing to make inhibitory responses. This paper pre-
sents a broader range of inhibitory tasks than have typically been
used in studies of populations with proposed inhibitory deficits.
In addition, using tasks that are more complex than a simple per-
ceptual decision has the potential to address the real world impli-
cations of inhibitory deficits evident in disorders such as ADHD.
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To study the interactions between semantic processing and motor response inhibition, we recorded scalp
EEG as subjects performed a series of Go/NoGo response inhibition tasks whose response criteria depended
on different levels of semantic processing. Three different tasks were used. The first required the subject to
make a Go/NoGo decision based on pictures of one particular car or one particular dog. The second used
pictures of different types of cars and of dogs, and the final task used stimuli that ranged across multiple
types of objects and animals. We found that the theta-band EEG power recorded during the NoGo response
was attenuated as a function of semantic complexity while the peak latency was delayed in only the most
complex category task. Further, frontal alpha-band desynchronization was strongest for the simplest task
and remained close to baseline for the other tasks. Finally, there was significant theta-band coherence
between the frontal pole and pre-SMA for the NoGo conditions across tasks, which was not found in the Go
trials. These findings provide information about how more rostral frontal regions interact with the pre-SMA
during response inhibition across different stimuli and task demands: specifically, level of processing affects
latency, difficulty affects amplitude, and coherence is affected by whether the decision is Go or NoGo.
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1. Introduction

Specific types of cognitive functions or underlying brain states
have long been associated with certain scalp-recordable EEG
phenomena (Nunez, 1981). For example, EEG power changes in the
theta band (4–8 Hz) have been linked to language operations
(Hagoort et al., 2004), movement and working memory (Kahana et
al., 2001; Raghavachari et al., 2006), threat processing (Aftanas et al.,
2003), and information coding (Klimesch et al., 1996), while alpha (8–
12 Hz) power has been linked with cortical idling (Pfurtscheller et al.,
1996). What has not been studied as extensively is the nature of the
interactions of the underlying EEG phenomena when two sets of
cognitive operations that have similar spatial and spectral EEG
manifestations proceed contemporaneously. Two cognitive tasks
that are both associated with frontal theta and alpha power are
response inhibition (Kirmizi-Aslan et al., 2006) and semantic
processing (Bastiaansen et al., 2005). The similarity in the spatial
and spectral distribution of these processes is interesting given how
often they must work together in day-to-day situations. Often, rapid
decisions must be made based on the category to which objects
belong (e.g., when driving, it is important to brake for children on the
road, but it is not necessary to brake for leaves on the road) and this
study seeks to address how the electrical manifestations of the neural
processes that underpin rapid object identification and categorization
interact with those related to rapid response inhibition.

The Go/NoGo task commonly elicits a frontal theta increase
(Kirmizi-Aslan et al., 2006; Yamanaka and Yamamoto, 2010) that is
accentuated in the NoGo compared to the Go condition. Go/NoGo
tasks involve a subject being presented a series of stimuli, a majority
of whichmandate a ‘Go’ response (e.g., subject presses a button) and a
minority that necessitate a ‘NoGo’ response (e.g., subject does not
press a button). Visually driven Go/NoGo tasks involve visual
processing, attention, and the decision to either inhibit or to execute
a motor action. However, inhibition is unique to the NoGo condition
and this has led to the proposition that inhibition is responsible for the
theta increase. Event-related potential (ERP) studies of response
inhibition have probed how task difficulty and related variables affect
the transient brain responses: for instance, the amplitude of the N2
changes are modulated by semantic complexity in
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ERP component depends on the level of perceptual similarity between
the two stimuli (Nieuwenhuis et al., 2004). Previous investigations
have shown that stimulus degradation affecting perceptual differen-
tiation in Go/NoGo tasks can modulate ERP responses, with the least
degraded stimuli eliciting the largest ERP response (Kok, 1986).
Beyond perceptual distinctions, it was found that the level of semantic
abstractness of Go and NoGo stimuli type (i.e., cars and dogs versus
objects and animals) influenced the frontal N2/P3 complex (Maguire
et al., 2009). Maguire et al. found that the abstractness of object
identification and categorization influenced only the P3 NoGo ERP
response, leading to the conclusion that the neural loci that mediate
each of the major components (semantic and response inhibition) of
the task were interacting in the performance of the task. It is intuitive
that time–frequency analysis and ERP analysis may sometimes
provide different windows into the same phenomenon (Luu et al.,
2004). In our task, however, how ERP and time–frequency findings
relate, and if this relationship changes with task demand, is unknown.
Studying the time–frequency properties of a process that has a known
influence on the P3 NoGo ERP response may clarify whether the same
relationships hold between task parameters and the spectral, tem-
poral and spatial properties of EEG.

Similar to theta power, alpha-band power changes are also often
associated with inhibitory processes (for review, Klimesch et al.,
2007). Specifically, decreases in alpha power from baseline are
thought to represent cortical involvement (van Winsun et al., 1984)
while high levels of alpha power purportedly reflect cortical idling
(Pfurtscheller et al., 1996). Alpha power has been shown to increase
when inhibiting a memory (Freunberger et al., 2009), performing top-
down control (von Stein et al., 2000), and most relevant to this study,
during the inhibition of a motor movement (Hummel et al., 2002).
Those studies found increased alpha power when inhibition was
required. These previous studies motivate the present study of the
interactions between theta and alpha power in the process of
response inhibition.

Some cognitive tasks that involve semantic processing elicit
electrical responses that are spatially and spectrally similar to those
detected with the Go/NoGo paradigm. Frontal theta power is known
to be modulated by semantic violations in sentence processing (Hald
et al., 2006) and category judgment (Brickman et al., 2005). Further,
frontal theta power changes have been reported when subjects detect
errors in semantic facts (Hagoort et al., 2004), suggesting that this
activity is related to accessing semantic memory stores. In disease
states, it has been shown that impairments in categorization abilities
are correlated with lack of theta increases (Schmiedt et al., 2005).
These findings suggest that, similar to response inhibition, frontal
theta is involved in semantic tasks including those associated with the
processes of identification and categorization tasks, though how the
two may interact is unknown. Also, it is known from developmental
literature that the cognitive abilities involved in identifying percep-
tual and conceptual categories differ (Mandler, 2000), and how those
different judgments lead to decisions remains an open question.

Through this study, we sought to address several points. First,
theta and alpha power have been associated with inhibition, but not
as much attention has been paid to the effects of task difficulty on the
magnitude of theta-band power changes. We used varying levels of
semantic complexity to modulate task difficulty in the three
experiments in this study. This allowed for the investigation of theta
and alpha responses to Go/NoGo tasks of varying degrees of semantic
difficulty on this EEG response. We hypothesized that characteriza-
tion of these spectral signatures would reveal independent markers of
response inhibition and level of semantic processing (object identi-
fication and categorization) as well as an interactionwherein the level
of semantic processing influences the response inhibition process.
Finally, we evaluated the coherence between different brain regions
to probe how different stimulus characteristics and task difficulty
influence the interaction between engaged brain regions. This study
Please cite this article as: Brier, M.R., et al., Frontal theta and alpha pow
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affords insight into how two quite distinct factors (response inhibition
and semantic processing) interact in the brain, and provides evidence
for how these interact behaviorally as well as electrophysiologically.

2. Methods

2.1. Subjects

Twenty-six subjects (14 female; 12 male) participated in this
study. All were college undergraduate students between the ages of
18 and 29 years (mean: 20 years). Students were given course credit
for a psychology course in exchange for participation. None of the
subjects reported neurological impairments. All were right handed
and gave informed consent prior to participation in accordance with
the Institutional Review Board of The University of Texas at Dallas.
This study was conducted according to the Good Clinical Practice
Guidelines, the Declaration of Helsinki, and the U.S. Code of Federal
Regulations.

2.2. Tasks

The subjects participated in three Go/NoGo tasks with different
types of stimuli and instructions. In each task, there were 160 (80%)
‘Go’ stimuli, for which the subject was instructed to press a button,
and 40 (20%) ‘NoGo’ stimuli, for which the subject was instructed to
withhold a response. In each of the three tasks, stimuli were presented
for 300 ms followed by a fixation point (+) for 1700 ms. All of the
stimuli were black line drawings fitted to a white 600×600 pixel
square.

Many of the time–frequency studies that have reported associa-
tions between theta power and either inhibitory responses or
erroneous responses used a simple perceptual distinction for the
Go/NoGo decisions (Yamanaka and Yamamoto, 2010). Typically, this
perceptual distinction is characterized by only rudimentary percep-
tual complexity (e.g., red versus green) and does not probe higher-
level semantic processing (for review, Simmonds et al., 2007). To
investigate how different semantic processing tasks interact with
response inhibition, we have developed a set of three Go/NoGo tasks
that vary in difficulty based on the level of semantic processing
required to respond. The most basic task consists of the presentation
of a picture of one specific car in the Go condition and one specific dog
in the NoGo condition. This task mandates Go/NoGo decisions made
on basic object level distinctions. However, with only one stimulus in
each condition, the task could potentially be performed on a
perceptual basis, i.e., one could plausibly perform this task simply by
looking for the dog's nose, or by focusing on one location that is dark
for one stimulus and light for the other. In these cases, the participants
could make the Go or NoGo decision on whether that rudimentary
perceptual feature appears. In the second task, the stimuli consist of
many different types of dogs and cars. This task still functions at the
object representation level, but the multiple stimuli preclude the task
being performed at a purely perceptual level and performance of the
task now requires basic object-level identification. Still, this object
identification tends to rely on perceptual features; for example, all
dogs in our group of stimuli have legs and tails while all the cars have
wheels and doors. The third task includes stimuli that comprise
multiple different types of animals (e.g., dogs, cats, snakes, etc.) and
objects (e.g., hammer, houses, etc.), with subjects not pressing for
animals. This discrimination is at the semantic-category level, and is
much less dependent on perceptual similarities, since the visual
shapes of items both within and between the main categorical
distinctions (animals versus objects) were heterogeneous.

In the first task (Single-object), the Go stimulus was a line drawing
of a specific car and the NoGo stimulus was a line drawing of a specific
dog. In the second task (Multiple-object), the Go stimuli included 40
different car stimuli and the NoGo stimuli included 10 different dogs,
er and coherence changes are modulated by semantic complexity in
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which were each shown four times. In the third task, (Semantic-
category), the Go stimuli consisted of 160 objects (40 food items, 40
cars, 20 clothing items, 20 kitchen items, 20 body parts, and 20 tools)
and the NoGo stimuli comprised 40 animals of varying visual
typicality. The order of the tasks across subjects was counterbalanced
to avoid order effects in the analysis.

2.3. Data acquisition and preprocessing

Continuous EEG was recorded from a 64-electrode Neuroscan
Quickcap using Neuroscan SynAmps2 amplifiers and Scan 4.3.2
software sampled at 1 kHz with impedances typically below 10 kΩ.
The data were processed to remove ocular and muscle artifacts. The
continuous EEG data were high-pass filtered from 0.15 Hz, and then
segmented offline into 2 s epochs spanning from 500 ms before to
1500 ms after the presentation of the visual stimuli.

The data were recordedwith a reference electrode located near the
vertex, resulting in small amplitudes over the top of the head. To
eliminate this effect, the data were re-referenced to the average
potential over the entire head, which approximates the voltages
relative to infinity (Nunez, 1981). In order to reduce a slight bias in the
electrode based average reference (Junghofer et al., 1999), spherical
splines (Perrin et al., 1989) were fitted to the data and used to
compute the average (Ferree, 2006). In subjects with a small number
of bad electrodes, the splines were used to interpolate those
electrodes, to yield a total of 62 data channels in every subject. For
the coherence analysis, the surface Laplacian transformation was
applied to reduce the effects of volume conduction (Babiloni et al.,
2001). While the application of the surface Laplacian does not
eliminate the effects of volume conduction, it is effective at reducing
the impact of such effects on coherence analysis (Srinivasan et al.,
1998). The use of this transform has been investigated and
theoretically and empirically validated (Nunez et al., 1997). Further,
the results presented here were compared between conditions, which
controls for the constant effects of volume conduction.

2.4. Event-related power analysis

Fourier power spectra were computed using a slight modification
of the pwelch function implemented in Matlab (Mathworks, Inc.),
applied to 0.25-s windows. Fourier estimates of the spectra were used
due to its high frequency resolution and, at low frequencies, its
comparable temporal resolution to wavelets and other methods. In
each epoch and time window, the time series were linearly detrended
and mean subtracted to reduce spectral leakage from the zero-
frequency bin, cosine tapered to reduce spectral leakage generally,
and zero-padded to 1-s duration to achieve 1-Hz frequency
resolution. It should be noted, however, that the rapidity of the task
necessitates using windows of such short duration, which obscures
detection and characterization of oscillations of lower than 4 Hz. Each
window was then Fourier transformed, magnitude squared, and
suitably normalized to obtain the power spectral density (PSD) in
units μV2/Hz. The results were averaged across trials to obtain the best
statistical estimate of the PSD. Only trials to which the subject
responded correctly, and those without artifacts, were included.

The time-dependent PSD was estimated in 0.25-s wide windows,
moving in 0.025-s steps. The time of each window was defined as the
center of the nonzero data in that window. The earliest time window
was –0.75 s and the latest timewas 2.75 s, because the centers of 0.25-
s windows cannot reach the ends of the epoch. For each condition, the
power spectrum in each moving window was averaged across all
trials, to obtain the best statistical estimate of the PSD. Finally, the
mean baseline power at each electrode and frequency was subtracted
to highlight power differences relative to baseline (Delorme and
Makeig, 2004).
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In order to measure the relative phase locking of observed
oscillations, the phase locking value (PLV)was calculated. Themethod
by which this value can be calculated from Fourier spectra is detailed
elsewhere (Delorme and Makeig, 2004). Briefly, PLV is a measure of
the consistency of the phase of an oscillation across trials, relative to
some event. If an oscillation has constant phase across trials (i.e., all
the peaks and troughs align in time) the value is 1, and if the phase is
random across trials the value is 0. Thus a PLV close to 1 indicates that
time-domain averaging of an oscillatory signal is likely to result in
those oscillations being reflected in the ERP.

2.5. Peak analysis

For the hypothesis-driven analysis of frontal theta power, we
performed a peak picking analysis on the midline frontal electrodes
(Fz, F1 and F2) in the theta band. Within a subject and condition, PSD
is a three dimensional matrix spanning space, frequency, and time.
First, the time series for the three electrodes of interest and the five
frequencies of interest (4–8 Hz) were averaged. Then, the maximal
value and latency of that value in the time period ranging from 0 s to
750 ms was computed. At the single subject level, these time courses
had only a single maximum, and thus provided a robust measure of
the theta response.

2.6. Data reduction

We applied a previous developed technique, called STAT-PCA, for
reducing the dimensionality of space–time–frequency (STF) data
collected in cognitive tasks (Ferree et al., 2009). More specifically, it
uses an extension of that original technique that accounts for both
within-subject and across-subject variance using block-design ANO-
VAswith subjects as the blocking factor. This technique has previously
been used to identify time–frequency changes associated with known
cognitive processes (Maguire et al., 2010). We extend this approach
further, to include more than two task conditions. This extension is
straightforward because the statistical inference relies upon ANOVA,
which can have an arbitrary number of independent variables.

The present experiment has two independent variables: task and
condition. The task variable has three levels (Single-object, Multiple-
object, and Semantic-category), and the condition variable has two
levels (Go and NoGo). The statistical model can be written P-
ctsk=μ+Cc+Tt+(CT)ct+Bs+εctsk, where P is the observed power
at a given space–time–frequency point, μ is the general mean, C is the
mean contributed by condition c, T is the mean contributed by task t, k
is the trial number, and B is the blocking factor accounting for the
mean contributed by subject s. It should be noted that the task and
condition are fixed effects, while the subjects and trials are random
effects. The ANOVA returns (for each space–time–frequency point)
three F statistics: main effect of task, main effect of condition, and
interaction of task and condition. These values were input to
sequential PCA. Thus the statistical step of STAT-PCA, accomplished
by ANOVA, reduces the dimensionality as follows:

P r; f ; τ; t; c; s; kð Þ→ANOVA
Fcondition r; f ; τð Þ
Ftask r; f ; τð Þ
Fboth r; f ;τð Þ

8<
:

All F values that resulted in p values above the threshold (pN0.05)
were set to 0.

The resulting F statistics have dimensions of space (electrodes) by
frequency by time matrix, and were reduced with sequential PCA. In
keeping with previous work (Ferree et al., 2009), the frequency
dimension was analyzed first. The matrix was reshaped such that the
columns indexed frequency and the rows indexed time and space.
PCA returned a set of eigenvalues and eigenvectors (factor loadings).
In order to determine the number of factors to retain, Parallel Analysis
er and coherence changes are modulated by semantic complexity in
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Table 1
The mean accuracy and reaction time are shown; standard deviations are in parentheses.

Task Go correct NoGo correct Go RT (ms)

Single-object 93.9%(17.6) 82.7%(18.9) 293.7(5.9)
Multiple-object 93.1%(17.9) 83.3%(18.6) 307.7(5.8)
Semantic-category 90.8%(18.2) 82.5%(18.5) 361.1(10.7)
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was employed (Horn, 1965; Ferree et al., 2009). This estimates the
eigenvalues of a null matrix, comprised of the same elements in
random positions, and only eigenvalues above the 95% confidence
intervals of the null distribution are retained. The retained eigenvec-
tors were rotated to meet the Varimax criterion. In order to compute
the corresponding factor scores, the original dataset was projected
onto these eigenvectors. Each factor score was reshaped, such that the
columns indexed electrodes and the rows indexed time points. A
second PCA was performed on this matrix, including similar steps for
factor retention and rotation. The resulting eigenvectors represented
topographies, and their corresponding factor scores represented their
time courses. The end result is a set of factor “triplets”, comprised of
spectral, spatial, and temporal factors derived through PCA.
Fig. 1. Time–frequency and PLV spectrograms derived from the frontal electrodes (Fz, F1, an
column) responses are shown for each task (rows). The first, fourth, and seventh rows show
and ninth rows show the PLV.
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2.7. Event-related coherence analysis

Coherence was computed using the short-window Fourier
transform, applied to 0.25-s windows. In each window, the time
series was linearly detrended to reduce spectral leakage from the
zero-frequency bin, cosine tapered to reduce spectral leakage
generally, zero-padded to 1-s duration, and Fourier transformed to
achieve 1-Hz frequency resolution. To form the numerator of
coherence, the cross-spectrum of two channels was computed by
multiplying their Fourier transforms, averaging across trials, and
computing the magnitude squared. To form the denominator (i.e., to
normalize for power differences), the power of each channel was
computed by averaging across trials.

3. Results

3.1. Behavioral data

The behavioral data for this task have been published previously
(Maguire et al., 2009) and are summarized here (see Table 1). Analysis
of the response time (RT) showed that the Semantic-category task
had a significantly longer RT than the other two tasks. Accuracy did
d F2) as well as averaged ERPs at the same electrodes. Go (left column) and NoGo (right
the ERP, the second, fifth, and eighth rows show the power (PSD), and the third, sixth
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Fig. 3. The peak theta latency depicted using the same format as Fig. 2. The results show
similar latencies for the Single-object and Multiple-object tasks and a significant
increase in latency for the Semantic-category task.
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not differ significantly across tasks. This suggests that the Semantic-
category task is inherently more difficult.

3.2. Event-related power: hypothesis-driven

Previous research has shown that medial frontal regions are
involved in response inhibition (Yamanaka and Yamamoto, 2010) and
that these areas can respond differentially based on the difficulty of
the task (Maguire et al., 2009). In order to test the hypothesis that
semantic complexity would influence these frontal regions in our
response inhibition task we performed a task by condition analysis on
the time–frequency data from this region. We thus evaluated midline
and immediately para-midline frontal electrodes (Fz, F1, F2) and
obtained the time–frequency spectrograms (Fig. 1). For each panel in
Fig. 1, the data presented represent the average across all subjects and
across the three electrodes of interest (Fz, F1, and F2). These
electrodes were chosen based on previous research in this task
(Maguire et al., 2009) as well as response inhibition in general
(Yamanaka and Yamamoto, 2010). For comparison, the ERP time
courses are also shown, but for a statistical treatment of those data,
see Maguire et al. (2009). The Go conditions for all three tasks showed
a small increase in the theta (4–8 Hz) bandwhile the NoGo conditions
showed a larger response (There is also activity below 4 Hz, but that
activity does not differ across conditions, pN0.25). In addition, the
NoGo increase in theta power was progressively attenuated as the
semantic complexity of the stimuli/task increased (i.e., amplitude
during the Single-object NoGo epochsNMultiple-object Identifica-
tionNSemantic-category). Each single subject's peak theta power and
latency were separately submitted to task by condition repeated
measures ANOVA. The amplitude showed a main effect of task
(Single-object, Multiple-object Identification, Semantic-category) F
(2,25)=13.19, p=0.00002, as well as a main effect of condition (Go
versus NoGo) F(1,25)=16.50, p=0.0004. However, there was also a
condition by task interaction, F(2,25)=8.9441, p=0.0005.

Fig. 2 shows the interaction in theta power between task and
condition. To investigate this interaction, we performed one-way
repeated measures ANOVA by splitting the previous two-way
repeated measures ANOVA according to condition. The Go condition
showed no significant task effect (F(2,25)=0.954, p=0.39), but the
NoGo ANOVA did (F(2,25)=10.551, p=0.0002). Post-hoc t-tests on
the NoGo condition theta power revealed that Single-object responses
were significantly different from (larger than) both Multiple-object
(t=2.53, p=0.018) and Semantic-category (t=3.80, p=0.0008),
and that theta power measured in the Multiple-object task was
significantly different from (larger than) that in the Semantic-
category task (t=2.7991, p=0.0097). Thus, the observed differences
Fig. 2. Summary of theta PSD in each task and condition. The first column depicts the
theta amplitudes in the Go and in the NoGo conditions for the Single-object task, second
column shows the amplitudes from theMultiple-object task, and the third column from
Semantic-category task. The figure shows no significant differences in the Go condition
across tasks and a systematic attenuation of the theta power increase across tasks in the
NoGo condition. Error bars represent one Standard Error.
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in theta-band power increases across tasks occurred primarily in the
NoGo condition.

The latency of the peak theta activity was also submitted to a task
by condition repeatedmeasures ANOVA. There was a significant effect
of task, F(2,25)=4.88, p=0.0116 (see Fig. 3). Post-hoc t-tests
revealed that the peak latency of the power increase during
performance of the Semantic-category task was significantly later
than it was for the both Single-object (t=2.79, p=0.009) and
Multiple-object tasks (t=2.78, p=0.01), but that the peak latencies
for the Single-object and Multiple-object tasks were not significantly
different from each other (t=0.87, p=0.39).

3.3. Phase locking value (PLV) and relationship to ERP

The PLV is shown in Fig. 1 for each task and condition. Roughly
speaking, the “hot” spots in power are also the “hot” spots in the PLV.
Closer inspection reveals interesting details; however, the following
discussion is limited to the red and yellow areas of the graphs. In the
theta band, the changes in power and PLV share roughly the same time
interval, for all tasks and condtions. This predicts a tight link between
theta power and the corresponding ERP. In thedelta band, particularly in
the NoGo condition, the PLV changes appeared to start and end slightly
later than thepower changes. This too is reflected in the ERP, as a slowing
of the oscillation followed by a more gradual decline toward baseline.

In order to investigate further the connection between the theta
power changes and the ERP, we performed a correlation analysis
between the peak theta power changes and the peak ERP amplitudes,
for each task and condition, with subjects as samples. Fig. 4 shows a
Fig. 4. The correlation between P3 amplitude and theta power amplitude is shown. The
Single-object task is shown in blue, the Multiple-object task is shown in green, and the
Semantic-category task is shown in red. Solid marks indicate the Go condition while
hollowmarks indicate the NoGo condition. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. STAT-PCA result for the interaction of task and condition. The spectrum (left panel) is loaded in the theta band, the peak (center panel) is topographically centered to the
midline frontal regions, and the time course (right panel) is maximal around 0.3 s. These distributions in frequency, space, and time are identical to what was found in the
hypothesis-driven analysis.
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scatter plot of these quantities. Correlation analysis showed that these
values were highly correlated in all tasks and conditions (rN0.5,
pb0.005; Fig. 4). In summary, these results show that the ERP in this
task is closely associated with increases in theta power. In discussing
this relationship, it is common to attempt to distinguish between
evoked responses, in which the ERP is associated with increased
power that adds to the background EEG, and induced responses, in
which the ERP is due to phase resetting of pre-existing power
(Sauseng et al., 2007). In the results presented here, the ERP dif-
ferences are explained to a great degree by evoked activity, although
the present analysis cannot rule out the possibility of some phase
resetting of ongoing activity as well (Kalcher and Pfurtscheller, 1995).
In contrast, to the extent that delta-band changes were visible in the
PLV, but not visible in the power, these delta-band changes would be
characterized best as induced responses due entirely to phase
resetting.

3.4. Event-related power: data driven

The first PCA decomposition was performed on the F matrix
representing the task by condition interaction. This yielded one
significant factor (Fig. 5). This factor was loaded in the theta band,
Fig. 6. STAT-PCA result for the main effect of task. The spectrum (left panel) is loaded in th
regions, and the time course (right panel) is maximal around 0.4 s but remains elevated th
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over midline frontal regions, at 0.3 s. This was the same spectrum,
spatial distribution, and time course found in the hypothesis-driven
analysis so no further investigation was performed on this factor. This
analysis, while revealing no new interactions of task and condition,
serves to validate the a priori hypothesis-driven approach.

The second PCA analysis was performed on the F matrix
representing main effects of task. This yielded one component. The
component (Fig. 6) was loaded in the alpha band (~10 Hz) over
midline prefrontal regions. The time course increased from baseline at
task onset and began to decline around 600 ms. The individual time
series are shown in Fig. 7, but as this is a main effect of task there is no
significant difference between the conditions. A summary figure is
shown (Fig. 8). The Single-object (blue) task showed a notable decline
from baseline, the Multiple-object (green) task showed a smaller
decline, and the Semantic-category (red) task showed no change from
baseline. In summary, the alpha power shows a decrease from
baseline in all tasks, but the Single-object task shows the greatest
decrease and the Semantic-category task shows the smallest decrease,
with the Multiple-object task exhibiting an intermediate degree of
reduction in power. Post-hoc tests reveal that the Single-object task
was significantly different than the other two tasks (t=1.95,
p=0.008), but Multiple-object and Semantic-category tasks were
e alpha band, the topography of the peak (center panel) is over the midline prefrontal
roughout the task.
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Fig. 7. Time courses of the prefrontal alpha response for the Go (solid) and NoGo
(dashed) conditions in the Single-object (blue), Multiple-object (green), and Semantic-
category (red) task. There was no significant difference between Go and NoGo
conditions, but there was a significant effect of task. The time courses show a drop in
alpha power for the Single-object task but a smaller drop in power for the Multiple-
object and Semantic-category task. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. The topography of theta power at 0.3 s in all tasks and conditions. Note that there
are two local maxima, one over FCz and one over FPz, and the attenuation of theta
power across tasks.

7M.R. Brier et al. / International Journal of Psychophysiology xxx (2010) xxx–xxx
not significantly different (pN0.1) from one another. The main effect
of condition yielded no components that were not accounted for in
the interaction.

3.5. Event-related coherence

To investigate the topography of the theta activation, the theta-
band EEG power at the time of the peak amplitude was plotted
topographically (Fig. 9). This demonstrated two distinct local maxima
for the theta power increase, one with topography over frontal pole
and the other over approximate midline pre-SMA areas. Given these
two circumscribed regions, we conducted a coherence analysis
between these two electrodes, the results of which are shown in
Fig. 10. The single subjects' peak theta coherence amplitudes and
latencies were submitted to task by condition repeated measures
ANOVAs separately. The magnitude of the coherence was found to be
significantly higher in the NoGo versus Go condition, F(1,25)=
132.7946, pb0.0001. There was no effect of task or an interaction for
the magnitude of the coherence. The latency of the peak coherence
showed no significant effects, Fb1.

4. Discussion

This study demonstrates significant differences in the amplitude of
the theta power associated with the NoGo response across tasks, with
Fig. 8. The mean alpha amplitude depicted using the same format as Fig. 2. The results
show a large decrease in power following stimulus presentation for the Single-object
task, and intermediate drop in power for the Multiple-object task, and a negligible drop
in power for the Semantic-category task.
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attenuated increases in theta power associated with increases in
semantic task/stimuli complexity. The presence of theta power
increases with NoGo responses is consistent with previous reports
that theta power changes are generally associated with inhibitory
cognitive processes (Yamanaka and Yamamoto, 2010). The localiza-
tion of these theta changes to the midline frontal regions is also
consistent with previous studies suggesting that successful NoGo
trials engage a frontal cortical–subcortical circuit that mediates
effective inhibition of the motor response (Aron and Poldrack, 2006;
Mostofsky et al., 2003). Second, the peak latency of the theta power
changes differs between tasks, with the Semantic-category task-
related theta power peaking at a significantly later time than the other
two tasks. Third, there were two distinct loci of theta activation found
in midline frontal regions that showed increased coherence in the
NoGo condition compared to the Go condition. Finally, the exploratory
STAT-PCA confirmed the theta-band effect found in the a priori
investigation using data-driven analysis, and also revealed an alpha
power effect in frontal regions that was not considered in the a priori
investigations.

4.1. Theta power amplitude

There was an increase in theta-band power, especially during the
NoGo trials in each of our experiments, all incorporating varying
degrees of both semantic processing and motor response inhibition
components. The attenuation of this power increases with increasing
semantic processing complexity, however, is somewhat at odds with
other studies. For example, theta power has been found to increase in
tasks requiring increased attention, task switching, executive func-
tioning, and/or workingmemory (for review, Kahana et al., 2001; also,
see Gevins et al, 1997; Burgess and Gruzelier, 2000), and in semantic
processing (Klimesch et al., 1994). In the context of our tasks,
increased task difficulty and semantic complexity are intertwined, as
indexed by the degree of diversity of the stimuli in the three tasks, and
evidenced by the increase in reaction times proceeding from the
Single-object through to the Semantic-category tasks. In addition to
attenuated increases in theta power, the latency of the peak of the
theta power increase grew in the NoGo trials when comparing the
Semantic-category task with the two other tasks. Further, visual
er and coherence changes are modulated by semantic complexity in
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Fig. 10. Coherence spectrograms between FCz and FPz. There is no increase in theta
coherence in the Go condition but there is a significant increase in the NoGo condition
around 0.3 s. There is no significant difference across tasks.
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inspection of the temporal profiles of the power curves for each of the
tasks revealed that, with the NoGo trials during the Semantic-category
task, the curve was broader than during the other two tasks. The fact
that this progression of changes is only evident during the NoGo trials
indicates that the phenomenon we are observing relates predomi-
nantly to response inhibition, as mediated by semantic complexity
and level of processing, i.e., not semantic factors. We suggest that, if
there were a prominent or isolable role of semantic complexity/level
of processing per se, there would likely also be changes during the Go
trials.

This peak widening and height reduction may reflect temporal
dispersion of semantic-related inputs to the dorsomedial frontal
lobes. Such dispersion could be due to inputs from the greater number
of, and disparate distances to, locations in the brain required to
execute the Semantic-category task. More specifically, in the most
complex task, the dorsomedial frontal lobes might have to receive,
process and synthesize inputs from sites mediating access to semantic
memory information from multiple categories of items, while in the
first two (Single-object and Multiple-object) tasks, the inputs might
be coming from the same two sites or groups of sites. The smaller but
still recordable dorsomedial and more rostral frontal responses with
the Go trials in each task presumably reflect a combination of the
object synthesis/identification role that has been attributed to the
dorsomedial frontal lobes (Crosson et al., 1999; Kraut et al., 2002) and
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the pre-movement activity that normally occurs in supplementary
and other non-primary motor regions. It should be noted that this
pattern of latency differences we detected in time-varying theta
power replicates previous findings on the P3 ERP component in this
task (Maguire et al., 2009) suggesting that, at least in the context of
this task, the EEG and ERP measures index the same or temporally
closely linked cortical processes.

In these Go/NoGo tasks, the NoGo stimuli were rare (20% of trials)
compared to the Go stimuli (80% of trials), creating a potential
confound between the NoGo response and an oddball response
(Nieuwenhuis et al., 2003). Previous studies of oddball responses
indicate that the oddball stimulus can evoke delta and theta power
increases in post-stimulus time epochs similar to those reported here
(ar-Eroglu et al., 1992). The differences in theta power across tasks
reported here, however, were not likely due to the oddball effect,
because we found reduced theta power with increasing task
complexity (i.e., tasks with fewer repeated stimuli), while previous
studies found a larger response for more rare stimuli in the oddball
task (Gruber and Muller, 2005; Courchesne, 1978).

Differences in task difficulty also modulate the oddball response.
Other authors have reported that increasing task difficulty increases
the frontal P3 amplitude (Hagen et al., 2006; Sawaki and Katayama,
2009), which is similar to the presentation frequency effect. This is
inconsistent with our findings, where increased task difficulty
reduced frontal theta power, and tracked roughly P3 amplitude.
Thus, although similar power frequencies are reported in both tasks,
the opposite direction of the effect suggests that our NoGo effects are
not simply the oddball effect.

4.2. Theta power topography

Our data exhibit two distinct theta power maxima in the midline
frontal region, one close to the frontal pole, and the other in the pre-
SMA area. The locations of these signal peaks did not vary across our
tasks, although the neural activity in both the SMA and the polar
regions is modulated by semantic difficulty. FMRI studies of response
inhibition identify many different loci of activation (Rubia et al., 2001)
that vary with the types of stimuli used and the semantic judgments
upon which the response inhibition is contingent; however, lesion
studies have provided insight into which areas are essential for
performance of inhibition tasks. Lesions of the frontal pole have been
shown to increase reaction times substantially in Go/NoGo tasks
(Picton et al., 2007), and lesions of pre-SMA areas have been shown to
increase the number of false-positives in the NoGo condition (Drewe,
1975; Picton et al., 2007). These lesion-related findings support the
concept that the midline frontal polar regions facilitate the task but
are not essential to its performance, whereas the midline pre-SMA
area is more immediately responsible for inhibiting the motor action.
While lesion studies do not directly specify the cognitive operations
underlying the neural activity in the frontal polar region, functional
imaging studies have implicated this region with action selection,
response inhibition, and performancemonitoring (Ridderinkhof et al.,
2004), all of which are plausible in the setting of the three tasks
reported here. Our findings support the hypothesis that in the
performance of motor inhibition tasks in general, the frontal polar
regions monitor and select the action of inhibition, while pre-SMA is
more directly engaged in inhibiting themotor response, with both the
difficulty and level of semantic processing modulating the neural
activity in these regions.

4.3. Theta coherence

EEG coherence is a measure of dynamic interaction between
neural structures and has often been used in the study of cognition
(Sauseng et al., 2005; Rappelsberger and Petsche, 1988; Weiss and
Mueller, 2003). Coherence analysis indicated increased theta
er and coherence changes are modulated by semantic complexity in
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interactions between the frontal polar and the pre-SMA regions in the
NoGo versus Go conditions, with no significant differences across the
tasks. This supports the notion that the frontal pole interacts with and
modulates the pre-SMA, which has been implicated in both motor
inhibition (Rubia et al., 2001) and semantic processing (Kraut et al.,
2002; Crosson et al., 1999). A finding of increased synchrony between
these brain regions in the NoGo condition is entirely consistent with
the hypothesis of greater motor control required to inhibit a response.

4.4. Relationship between theta and ERP measures

The results presented here sought to relate both ERP and time–
frequency measures. One measure that facilitates this is the PLV. The
theta power increases in power were concurrent with increases in
PLV, which predicts that theta-band oscillations should be manifest in
the ERP. This prediction was confirmed by the high correlation
between the ERP and power measures, and suggests that the theta
power increases reported here are strongly linked to the stimulus and
highly consistent across trials.

4.5. Alpha power

Beyond its general interpretation as an idling rhythm (Pfurtschel-
eller et al., 1996), alpha power has been associated specifically with
semantic processing (Klimesch et al., 1997) as well as inhibition
(Klimesch et al., 2007) though controversy remains (Cooper et al.,
2003). Alpha power in midline prefrontal electrodes showed
attenuation in all three tasks, with the greatest attenuation in the
Single-object task, and no effect of condition. This finding differs from
the finding for theta power in three ways. First, alpha power was
attenuated, while theta power was enhanced in the NoGo condition
generally. Second, the alpha effect occurred in both conditions
equally, while the theta effect was greater in the NoGo condition,
further suggesting theta power association with the inhibitory
component in these tasks. Third, the alpha effect was similar in the
two more difficult tasks, both of which require some type of semantic
classification. The Single-object task is cognitively simpler, and the
relative lack of alpha suppression in the more demanding Multiple-
object and Semantic-category tasks is counter to interpretation of
alpha power changes in these tasks as an index of cortical idling
(Pfurtscheller et al., 1996). This lack of alpha suppression may reflect
an as-of-yet unclear interaction between aspects of the semantically
more complex tasks and response inhibition. Regardless of the
direction of this effect, there is no differentiation between the Go
and NoGo responses, suggesting that alpha power still indexes overall
task difficulty in some regard. However, there is evidence that the
inability to suppress alpha power (following traumatic brain injury)
results in poor performance in a response inhibition task (Roche et al.,
2004), which challenges the notion that alpha power is only involved
in the semantic portion of this task.

4.6. Summary

This study demonstrates that in inhibition tasks, semantic
complexity attenuates the amplitude of theta power, while the
engagement of semantic categorization versus object identification
affects the latency of the theta response. These theta power changes
are noted in two regions for all of the tasks— frontal pole and midline
pre-SMA. Activity in the pre-SMA and frontal poles is closely related to
task difficulty (measured by RTs) and may be directly proportional to
it, in that there is increased theta power in the tasks requiring lower
levels of semantic processing. This study provides some information
of how semantic complexity modulates response inhibition, at least at
a scalp-observable electrophysiological level, which supplements
previous work on the perceptual modulation of response inhibition
(Nieuwenhuis et al., 2004). The task invoking a semantic categoriza-
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tion judgment had a delayed peak latency of theta power changes
compared to the two object identification level tasks, demonstrating
that level of semantic processing modulates the time course of theta
power. The frontal polar and pre-SMA areas showed increased theta
synchronization for the NoGo versus Go condition, whichwas of about
the same magnitude across all tasks and theta amplitude. Frontal lobe
alpha power showed no distinction between Go and NoGo compo-
nents of any task, although there was less suppression for the two
more difficult tasks. Compared to previous research focusing on
response inhibition of perceptual stimulus characteristics (e.g., red–
green, triangle–square, direction of arrow, etc.), we systematically
varied the stimulus characteristics and task by levels of semantic
conceptual processing and detected multiple modulations of the
response inhibition circuit.
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